Escola Superior Desporto e Lazer, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun’Álvares, Viana do CasteloPortugal
Gdansk University of Physical Education and SportGdańsk, Poland
Sport Physical Activity and Health Research & Innovation CenterViana do Castelo, Portugal
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.
Abueid, S. (2024). Blood-Flow Restriction Walking: Effects on Insulin Sensitivity and Aerobic Capacity in Type 2 Diabetes. https://doi.org/10.61186/aassjournal.1477Search in Google Scholar
Amani-Shalamzari, S., Rajabi, S., Rajabi, H., Gahreman, D. E., Paton, C., Bayati, M., Rosemann, T., Nikolaidis, P. T., & Knechtle, B. (2019). Effects of Blood Flow Restriction and Exercise Intensity on Aerobic, Anaerobic, and Muscle Strength Adaptations in Physically Active Collegiate Women. Frontiers in Physiology, 10. https://doi.org/10.3389/fphys.2019.00810Search in Google Scholar
Bielitzki, R., Behrendt, T., Behrens, M., & Schega, L. (2021). Current Techniques Used for Practical Blood Flow Restriction Training: A Systematic Review. Journal of Strength and Conditioning Research, 35(10), 2936–2951. https://doi.org/10.1519/JSC.0000000000004104Search in Google Scholar
Chen, H., Huang, X., Dong, M., Wen, S., Zhou, L., & Yuan, X. (2023). The Association Between Sarcopenia and Diabetes: From Pathophysiology Mechanism to Therapeutic Strategy. Diabetes, Metabolic Syndrome and Obesity, Volume 16, 1541–1554. https://doi.org/10.2147/DMSO.S410834Search in Google Scholar
Cho, C., & Lee, S. (2024). The Effects of Blood Flow Restriction Aerobic Exercise on Body Composition, Muscle Strength, Blood Biomarkers, and Cardiovascular Function: A Narrative Review. International Journal of Molecular Sciences, 25(17), 9274. https://doi.org/10.3390/ijms25179274Search in Google Scholar
Christiansen, D., Eibye, K. H., Hostrup, M., & Bangsbo, J. (2019). Blood flow-restricted training enhances thigh glucose uptake during exercise and muscle antioxidant function in humans. Metabolism, 98, 1–15. https://doi.org/10.1016/j.metabol.2019.06.003Search in Google Scholar
Christiansen, D., Eibye, K., Hostrup, M., & Bangsbo, J. (2020). Training with blood flow restriction increases femoral artery diameter and thigh oxygen delivery during knee-extensor exercise in recreationally trained men. The Journal of Physiology, 598(12), 2337–2353. https://doi.org/10.1113/JP279554Search in Google Scholar
Colberg, S. R., Sigal, R. J., Yardley, J. E., Riddell, M. C., Dunstan, D. W., Dempsey, P. C., Horton, E. S., Castorino, K., & Tate, D. F. (2016). Physical Activity/Exercise and Diabetes: A Position Statement of the American Diabetes Association. Diabetes Care, 39(11), 2065–2079. https://doi.org/10.2337/dc16-1728Search in Google Scholar
Dremin, V., Volkov, M., Margaryants, N., Myalitsin, D., Rafailov, E., & Dunaev, A. (2025). Blood flow dynamics in the arterial and venous parts of the capillary. Journal of Biomechanics, 179, 112482. https://doi.org/10.1016/j.jbiomech.2024.112482Search in Google Scholar
Early, K. S., Rockhill, M., Bryan, A., Tyo, B., Buuck, D., & McGinty, J. (2020). Effect of blood flow restriction training on muscular performance, pain and vascular function. International Journal of Sports Physical Therapy, 15(6), 892–900. https://doi.org/10.26603/ijspt20200892Search in Google Scholar
Fini, E. M., Motefakker, M., Ahmadizad, S., Salimian, M., & Andani, F. M. (2023). Responses of Hemodynamic and Hematological Changes to Resistance Exercise with and Without Blood Flow Restriction in Patients with Type 2 Diabetic. 2(30), 284–300.Search in Google Scholar
Fini, E. M., Salimian, M., & Ahmadizad, S. (2022). Responses of platelet CD markers and indices to resistance exercise with and without blood flow restriction in patients with type 2 diabetes. Clinical Hemorheology and Microcirculation, 80(3), 281–289. https://doi.org/10.3233/CH-211229Search in Google Scholar
Giles, L., Webster, K. E., McClelland, J., & Cook, J. L. (2017). Quadriceps strengthening with and without blood flow restriction in the treatment of patellofemoral pain: a double-blind randomised trial. British Journal of Sports Medicine, 51(23), 1688–1694. https://doi.org/10.1136/bjsports-2016-096329Search in Google Scholar
Groen, B. B. L., Hamer, H. M., Snijders, T., van Kranenburg, J., Frijns, D., Vink, H., & van Loon, L. J. C. (2014). Skeletal muscle capillary density and microvascular function are compromised with aging and type 2 diabetes. Journal of Applied Physiology, 116(8), 998–1005. https://doi.org/10.1152/japplphysiol.00919.2013Search in Google Scholar
Hedt, C., McCulloch, P. C., Harris, J. D., & Lambert, B. S. (2022). Blood Flow Restriction Enhances Rehabilitation and Return to Sport: The Paradox of Proximal Performance. Arthroscopy, Sports Medicine, and Rehabilitation, 4(1), e51–e63. https://doi.org/10.1016/j.asmr.2021.09.024Search in Google Scholar
Izquierdo, M., Merchant, R. A., Morley, J. E., Anker, S. D., Aprahamian, I., Arai, H., Aubertin-Leheudre, M., Bernabei, R., Cadore, E. L., Cesari, M., Chen, L.-K., de Souto Barreto, P., Duque, G., Ferrucci, L., Fielding, R. A., García-Hermoso, A., Gutiérrez-Robledo, L. M., Harridge, S. D. R., Kirk, B., … Singh, M. F. (2021). International Exercise Recommendations in Older Adults (ICFSR): Expert Consensus Guidelines. The Journal of Nutrition, Health and Aging, 25(7), 824–853. https://doi.org/10.1007/s12603-021-1665-8Search in Google Scholar
Jarosz, J., Trybulski, R., Krzysztofik, M., Tsoukos, A., Filip-Stachnik, A., Zajac, A., Bogdanis, G. C., & Wilk, M. (2021). The Effects of Ischemia During Rest Intervals on Bar Velocity in the Bench Press Exercise With Different External Loads. Frontiers in Physiology, 12. https://doi.org/10.3389/fphys.2021.715096Search in Google Scholar
Jones, M. T., Aguiar, E. J., & Winchester, L. J. (2021). Proposed Mechanisms of Blood Flow Restriction Exercise for the Improvement of Type 1 Diabetes Pathologies. In Diabetology (Vol. 2, Issue 4, pp. 176–189). MDPI. https://doi.org/10.3390/diabetology2040016Search in Google Scholar
Joyner, M. J., & Casey, D. P. (2015). Regulation of Increased Blood Flow (Hyperemia) to Muscles During Exercise: A Hierarchy of Competing Physiological Needs. Physiological Reviews, 95(2), 549–601. https://doi.org/10.1152/physrev.00035.2013Search in Google Scholar
Klein, S., Gastaldelli, A., Yki-Järvinen, H., & Scherer, P. E. (2022). Why does obesity cause diabetes? Cell Metabolism, 34(1), 11–20. https://doi.org/10.1016/j.cmet.2021.12.012Search in Google Scholar
Koutny, T. (2013). Glucose predictability, blood capillary permeability, and glucose utilization rate in subcutaneous, skeletal muscle, and visceral fat tissues. Computers in Biology and Medicine, 43(11), 1680–1686. https://doi.org/10.1016/j.compbiomed.2013.08.008Search in Google Scholar
Lee, S.-H., Park, S.-Y., & Choi, C. S. (2022). Insulin Resistance: From Mechanisms to Therapeutic Strategies. Diabetes & Metabolism Journal, 46(1), 15–37. https://doi.org/10.4093/dmj.2021.0280Search in Google Scholar
Li, S., Li, S., Wang, L., Quan, H., Yu, W., Li, T., & Li, W. (2022). The Effect of Blood Flow Restriction Exercise on Angiogenesis-Related Factors in Skeletal Muscle Among Healthy Adults: A Systematic Review and Meta-Analysis. Frontiers in Physiology, 13. https://doi.org/10.3389/fphys.2022.814965Search in Google Scholar
Lopez-Pedrosa, J. M., Camprubi-Robles, M., Guzman-Rolo, G., Lopez-Gonzalez, A., Garcia-Almeida, J. M., Sanz-Paris, A., & Rueda, R. (2024). The Vicious Cycle of Type 2 Diabetes Mellitus and Skeletal Muscle Atrophy: Clinical, Biochemical, and Nutritional Bases. Nutrients, 16(1), 172. https://doi.org/10.3390/nu16010172Search in Google Scholar
Lorenz, D. S., Bailey, L., Wilk, K. E., Mangine, R. E., Head, P., Grindstaff, T. L., & Morrison, S. (2021). Blood Flow Restriction Training. Journal of Athletic Training, 56(9), 937–944. https://doi.org/10.4085/418-20Search in Google Scholar
Ma, X., Ai, Y., Lei, F., Tang, X., Li, Q., Huang, Y., Zhan, Y., Mao, Q., Wang, L., Lei, F., Yi, Q., Yang, F., Yin, X., He, B., Zhou, L., & Ruan, S. (2024). Effect of blood flow-restrictive resistance training on metabolic disorder and body composition in older adults with type 2 diabetes: a randomized controlled study. Frontiers in Endocrinology, 15. https://doi.org/10.3389/fendo.2024.1409267Search in Google Scholar
Martins, A., José Brandão de Albuquerque Filho, N., Gonçalves Assis, M., Sabino de Queiros, V., Wagner da Silva Rodrigues, A., Samara Batista dos Santos, E., Guilherme de Araújo Tinôco Cabral, B., Cesar Gomes da Silva, J., & Rodrigues Neto, G. (2023). Resistance exercise with blood flow restriction elicits perceptual responses similar to high-load resistance exercise in women with type 2 diabetes: a crossover and randomized study. Health Nexus, 1(1), 32–39. https://doi.org/https:/doi.org/10.61838/kman.hn.1.1.6Search in Google Scholar
Manini, T. M., Vincent, K. R., Leeuwenburgh, C. L., Lees, H. A., Kavazis, A. N., Borst, S. E., & Clark, B. C. (2011). Myogenic and proteolytic mRNA expression following blood flow restricted exercise. Acta physiologica, 201(2), 255–263.Search in Google Scholar
Mondal, A., Jangra, M. K., Banyal, M., & Saxena, A. (2024). Reaping Metabolic Benefits of Blood Flow Restriction Training (BFRT): A Boon for Diabetes and HypertensionA Narrative Review. Journal of Clinical and Diagnostic Research. https://doi.org/10.7860/JCDR/2024/75493.20004Search in Google Scholar
Mudaliar, S., & Edelman, S. V. (2001). Insulin therapy in type 2 diabetes. Endocrinology and Metabolism Clinics of North America, 30(4), 935–982. https://doi.org/10.1016/S0889-8529(05)70222-XSearch in Google Scholar
Nascimento, D. da C., Rolnick, N., Neto, I. V. de S., Severin, R., & Beal, F. L. R. (2022). A Useful Blood Flow Restriction Training Risk Stratification for Exercise and Rehabilitation. Frontiers in Physiology, 13. https://doi.org/10.3389/fphys.2022.808622Search in Google Scholar
Okita, K., Takada, S., Morita, N., Takahashi, M., Hirabayashi, K., Yokota, T., & Kinugawa, S. (2019). Resistance training with interval blood flow restriction effectively enhances intramuscular metabolic stress with less ischemic duration and discomfort. Applied Physiology, Nutrition, and Metabolism, 44(7), 759–764. https://doi.org/10.1139/apnm-2018-0321Search in Google Scholar
Park, S. W., Goodpaster, B. H., Lee, J. S., Kuller, L. H., Boudreau, R., de Rekeneire, N., Harris, T. B., Kritchevsky, S., Tylavsky, F. A., Nevitt, M., Cho, Y., & Newman, A. B. (2009). Excessive Loss of Skeletal Muscle Mass in Older Adults With Type 2 Diabetes. Diabetes Care, 32(11), 1993–1997. https://doi.org/10.2337/dc09-0264Search in Google Scholar
Park, S.-Y., Kwak, Y. S., Harveson, A., Weavil, J. C., & Seo, K. E. (2015). Low Intensity Resistance Exercise Training with Blood Flow Restriction: Insight into Cardiovascular Function, and Skeletal Muscle Hypertrophy in Humans. The Korean Journal of Physiology & Pharmacology, 19(3), 191. https://doi.org/10.4196/kjpp.2015.19.3.191Search in Google Scholar
Pignanelli, C., Christiansen, D., & Burr, J. F. (2021). Blood flow restriction training and the high-performance athlete: science to application. Journal of Applied Physiology, 130(4), 1163–1170. https://doi.org/10.1152/japplphysiol.00982.2020Search in Google Scholar
Saatmann, N., Zaharia, O.-P., Loenneke, J. P., Roden, M., & Pesta, D. H. (2021a). Effects of Blood Flow Restriction Exercise and Possible Applications in Type 2 Diabetes. Trends in Endocrinology & Metabolism, 32(2), 106–117. https://doi.org/10.1016/j.tem.2020.11.010Search in Google Scholar
Saatmann, N., Zaharia, O.-P., Loenneke, J. P., Roden, M., & Pesta, D. H. (2021b). Effects of Blood Flow Restriction Exercise and Possible Applications in Type 2 Diabetes. Trends in Endocrinology & Metabolism, 32(2), 106–117. https://doi.org/10.1016/j.tem.2020.11.010Search in Google Scholar
Saatmann, N., Zaharia, O.-P., Loenneke, J. P., Roden, M., & Pesta, D. H. (2021c). Effects of Blood Flow Restriction Exercise and Possible Applications in Type 2 Diabetes. Trends in Endocrinology & Metabolism, 32(2), 106–117. https://doi.org/10.1016/j.tem.2020.11.010Search in Google Scholar
Şahin, E., Ayaz, T., & Saglam, M. (2024). Acute effects of blood flow restricted aerobic exercise in type 2 diabetes mellitus. Medicine (United States), 103(31), e39031. https://doi.org/10.1097/MD.0000000000039031Search in Google Scholar
Satoh, T. (2014). Molecular Mechanisms for the Regulation of Insulin-Stimulated Glucose Uptake by Small Guanosine Triphosphatases in Skeletal Muscle and Adipocytes. International Journal of Molecular Sciences, 15(10), 18677–18692. https://doi.org/10.3390/ijms151018677Search in Google Scholar
Schoenfeld, B. J., Ogborn, D., Piñero, A., Burke, R., Coleman, M., & Rolnick, N. (2023). Fiber-Type-Specific Hypertrophy with the Use of Low-Load Blood Flow Restriction Resistance Training: A Systematic Review. Journal of Functional Morphology and Kinesiology, 8(2), 51. https://doi.org/10.3390/jfmk8020051Search in Google Scholar
Shah, A., Mehta, N., & Reilly, M. P. (2008). Adipose Inflammation, Insulin Resistance, and Cardiovascular Disease. Journal of Parenteral and Enteral Nutrition, 32(6), 638–644. https://doi.org/10.1177/0148607108325251Search in Google Scholar
Strasser, B. (2018). Survival of the fittest VO sub 2 sub max a key predictor of longevity. Frontiers in Bioscience, 23(8), 4657. https://doi.org/10.2741/4657Search in Google Scholar
Takano, H., Morita, T., Iida, H., Asada, K., Kato, M., Uno, K., Hirose, K., Matsumoto, A., Takenaka, K., Hirata, Y., Eto, F., Nagai, R., Sato, Y., & Nakajima, T. (2005). Hemodynamic and hormonal responses to a short-term low-intensity resistance exercise with the reduction of muscle blood flow. European Journal of Applied Physiology, 95(1), 65–73. https://doi.org/10.1007/s00421-005-1389-1Search in Google Scholar
Tanaka, M., Morifuji, T., Sugimoto, K., Akasaka, H., Fujimoto, T., Yoshikawa, M., Nakanishi, R., Kondo, H., & Fujino, H. (2021). Effects of combined treatment with blood flow restriction and low-current electrical stimulation on capillary regression in the soleus muscle of diabetic rats. Journal of Applied Physiology, 131(4), 1219–1229. https://doi.org/10.1152/japplphysiol.00366.2021Search in Google Scholar
Tanaka, M., Morifuji, T., Yoshikawa, M., Nakanishi, R., & Fujino, H. (2018). Effects of combined treatment with blood flow restriction and low intensity electrical stimulation on diabetes mellitus-associated muscle atrophy in rats. https://doi.org/10.1111/jdb.12857Search in Google Scholar
Wagner da Silva Rodrigues, A., Beatriz Alves Martins, A., José Brandão de Albuquerque Filho, N., Sabino de Queiros, V., Gonçalves Assis, M., Samara Batista dos Santos, E., Arthur Cavalcanti Cabral, L., Barbosa Gomes, F., Taheri, M., Irandoust, K., Rodrigues Neto, G., Silva Rodrigues, da, Martins, A., Albuquerque Filho, de, Queiros, de, Assis, G., Santos, dos, & Cabral, C. (2023). Strength Exercises With Blood Flow Restriction Promotes Hypotensive and Hypoglycemic Effects in Women With Mellitus Type 2 Diabetes?: Randomized Crossover Study. Health Nexus, 1(1), 32–39. https://doi.org/https://doi.org/10.61838/kman.hn.1.1.6Search in Google Scholar
Wilk, M., Trybulski, R., Krzysztofik, M., Wojdala, G., Campos, Y., Zajac, A., Lulińska, E., & Stastny, P. (2021). Acute Effects of Different Blood Flow Restriction Protocols on Bar Velocity During the Squat Exercise. Frontiers in Physiology, 12. https://doi.org/10.3389/fphys.2021.652896Search in Google Scholar
Wong, V., Spitz, R. W., Song, J. S., Yamada, Y., Kataoka, R., Hammert, W. B., Kang, A., Seffrin, A., Bell, Z. W., & Loenneke, J. P. (2024). Blood flow restriction augments the cross-education effect of isometric handgrip training. European Journal of Applied Physiology, 124(5), 1575–1585. https://doi.org/10.1007/s00421-023-05386-ySearch in Google Scholar
Wortman, R. J., Brown, S. M., Savage-Elliott, I., Finley, Z. J., & Mulcahey, M. K. (2021). Blood Flow Restriction Training for Athletes: A Systematic Review. The American Journal of Sports Medicine, 49(7), 1938–1944. https://doi.org/10.1177/0363546520964454Search in Google Scholar