Otwarty dostęp

Numerical Study of Thermal Dissipation Processes in Silicon

B&H Electrical Engineering's Cover Image
B&H Electrical Engineering
Special Issue: Computational, Numerical and Mathematical Methods in Electrical Engineering

Zacytuj

[1] Z. Aksamija. U. Ravaioli: Joule heating and phonon transport in silicon MOSFETs, Journal of Comput. Electron., vol. 5, no. 4, pp. 431-434, 200610.1007/s10825-006-0045-2 Search in Google Scholar

[2] Z. Aksamija, I. Knezevic: Anisotropy and boundary scattering in the lattice thermal conductivity of silicon nanomembranes, Phys. Rev. B, 82.045319, July 201010.1103/PhysRevB.82.045319 Search in Google Scholar

[3] S. Sinha, K. E. Goodson: Phonon heat conduction from nanoscale hotspots in semiconductors. In Heat Transfer 2002, Proceedings of the Twelfth International Heat Transfer Conference, pp. 573–578, 200210.1615/IHTC12.4160 Search in Google Scholar

[4] J. Lai, A. Majumdar: Concurrent thermal and electrical modeling of sub-micrometer silicon devices, Journal of Applied Physics, vol. 79, no. 9, pp. 7353-7361, 199610.1063/1.361424 Search in Google Scholar

[5] J.A. Rowlette, K.E. Goodson: Fully coupled nonequilibrium electronphonon transport in nanometer-scale silicon fets, Electron Devices, IEEE Transactions on, vol. 55, no. 1, pp. 220-232, Jan. 200810.1109/TED.2007.911043 Search in Google Scholar

[6] M. Mohamed, Z. Aksamija, W. Vitale, F. Hassan, K.-H. Park, U. Ravaioli: A conjoined electron and thermal transport study of thermal degradation induced during normal operation of multigate transistors, IEEE Trans. Electron Devices, vol. 66, pp. 976-983, 201410.1109/TED.2014.2306422 Search in Google Scholar

[7] M. Mohamed, K. Raleva, U. Ravaioli, D. Vasileska, Z. Aksamija: Phonon dissipation in nanostructured semiconductor devices: Dispersing heat is critical for continued integrated circuit progress, IEEE Nanotechnology Magazine, vol. 13, no. 4, pp. 6-17, 201910.1109/MNANO.2019.2916114 Search in Google Scholar

[8] E. Pop, R. W. Dutton, K. E. Goodson: Analytic band Monte Carlo model for electron transport in Si including acoustic and optical phonon dispersion, Journal of Applied Physics, vol. 96, no. 9, pp. 4998–5005, November 200410.1063/1.1788838 Search in Google Scholar

[9] E. Pop, R. W. Dutton, K. E. Goodson: Monte Carlo simulation of Joule heating in bulk and strained silicon, Applied Physics Letters, vol. 86, pp. 082101–082103, 200510.1063/1.1870106 Search in Google Scholar

[10] Z. Aksamija, U. Ravaioli: Energy conservation in collision broadening over a sequence of scattering events in semiclassical monte carlo simulation, Journal of Appl. Phys., vol. 105, 083722, April 200910.1063/1.3116544 Search in Google Scholar

[11] M. V. Fischetti, S. E. Laux: Monte Carlo analysis of electron transport in small semiconductor devices including band-structure and space-charge effects. Physical Review B, vol. 38, no. 14, pp. 9721–9745, November 198810.1103/PhysRevB.38.9721 Search in Google Scholar

[12] G. Gilat: Analysis of methods for calculating spectral properties in solids, Journal of Comp. Phys., vol. 10, no. 3, pp. 432–465, Dec. 197210.1016/0021-9991(72)90046-0 Search in Google Scholar

[13] Marvin L. Cohen, T. K. Bergstresser: Band structures and pseudopotential form factors for fourteen semiconductors of the diamond and zinc-blende structures, Phys. Rev., vol. 141, no. 2, pp. 789–796, Jan 196610.1103/PhysRev.141.789 Search in Google Scholar

[14] J. R. Chelikowsky, Marvin L. Cohen: Nonlocal pseudopotential calculations for the electronic structure of eleven diamond and zinc-blende semiconductors, Phys. Rev. B, vol. 14, no. 2, pp. 556–582, Jul 197610.1103/PhysRevB.14.556 Search in Google Scholar

[15] O. H. Nielsen, W. Weber: Lattice dynamics of group IV semiconductors using an adiabatic bond charge model, Computer Physics Communications, vol. 18, pp. 101–107, 197910.1016/0010-4655(79)90027-4 Search in Google Scholar

[16] Z. Aksamija, U. Ravaioli: Anharmonic decay of g-process longitudinal optical phonons in silicon, Appl. Phys. Lett., vol. 96, no. 9, pp. 091911-1 - 091911-3, 201010.1063/1.3350894 Search in Google Scholar

[17] S. Sinha, E. Pop, R. W. Dutton, K. E. Goodson: Non-equilibrium phonon distributions in sub-100 nm silicon transistors, Journal of Heat Transfer, vol. 128, pp. 638–647, 200610.1115/1.2194041 Search in Google Scholar

[18] M. G. Holland: Analysis of lattice thermal conductivity, Phys. Rev., vol. 132, no. 6, pp. 2461–2471, Dec 196310.1103/PhysRev.132.2461 Search in Google Scholar

[19] J. Callaway: Model for lattice thermal conductivity at low temperatures. Phys. Rev., vol. 113, no. 4, pp. 1046–1051, Feb 195910.1103/PhysRev.113.1046 Search in Google Scholar

[20] B. P. Allen: A tetrahedron method for doubly constrained brillouin zone integrals application to silicon optic phonon decay, Phys. Stat. Sol. B, vol. 120, no. 2, pp. 529–538, 198310.1002/pssb.2221200209 Search in Google Scholar

[21] A. Debernardi, S. Baroni, E. Molinari: Anharmonic phonon lifetimes in semiconductors from density-functional perturbation theory, Phys. Rev. Lett., vol. 75, no. 9, pp. 1819–1822, Aug 199510.1103/PhysRevLett.75.181910060399 Search in Google Scholar

[22] E. M. Conwell: High Field Transport in Semiconductors, Academic Press, Inc., New York, 1967 Search in Google Scholar

[23] B. K. Ridley: Quantum Processes in Semiconductors, Clarendon Press, Oxford, 1998 Search in Google Scholar

[24] K. Hess: Advanced Theory of Semiconductor Devices, IEEE Press, New York, 2000 Search in Google Scholar

[25] G. Gilat, L. J. Raubenheimer: Accurate numerical method for calculating frequency-distribution functions in solids, Phys. Rev., vol. 144. no. 2, pp.390–395, Apr 196610.1103/PhysRev.144.390 Search in Google Scholar

[26] W. Weber. Adiabatic bond charge model for the phonons in diamond, Si, Ge, and U-Sn, Physics Reviews B, vol. 15, pp. 4789–4803, May 197710.1103/PhysRevB.15.4789 Search in Google Scholar

[27] G. L. Bir, G. E. Pikus: Symmetry and Strain-Induced Effects in Semiconductors, Halsted Press, New York, 1974 Search in Google Scholar

[28] D. K. Ferry: Semiconductor Transport, Taylor and Francis, New York, 200010.1201/b21468 Search in Google Scholar

[29] T. A. Bak: Phonons and Phonon interactions, W. A. Benjamin, Inc., New York, 1964 Search in Google Scholar

[30] C. Kittel: Introduction to Solid State Physics, John Wiley and Sons, Inc., New York, 2005 Search in Google Scholar

[31] A. Duncan, U. Ravaioli, J. Jakumeit: Full-band monte carlo investigation of hot carrier trends in the scaling of metal-oxidesemiconductor field-effect transistors, IEEE Transactions on Electron Devices, vol. 45, no. 4, pp. 867–876, Apr 199810.1109/16.662792 Search in Google Scholar

[32] B. Winstead, U. Ravaioli: A quantum correction based on schroedinger equation applied to monte carlo device simulation, IEEE Transactions on Electron Devices, vol. 50, no. 2,, 200310.1109/TED.2003.809431 Search in Google Scholar

[33] J. Y. Tang, K. Hess: Impact ionization in of electrons in silicon (steady state), Journal of Applied Physics, vol. 54, no. 9, pp. 5139–5144, September 198310.1063/1.332737 Search in Google Scholar

[34] G. Gilat, Z. Kam: High-resolution method for calculating spectra of solids, Phys. Rev. Lett., vol. 22, no. 4, pp. 715–717, Apr 196910.1103/PhysRevLett.22.715 Search in Google Scholar

[35] M. V. Fischetti, P. D. Yoder, M. M. Khatami, G. Gaddemane, M. L. Van de Put: Hot electrons in si lose energy mostly to optical phonons: Truth or myth, Applied Physics Letters, vol.114, no. 22, pp. 222104, 201910.1063/1.5099914 Search in Google Scholar

eISSN:
2566-3151
Język:
Angielski