1. bookTom 30 (2022): Zeszyt 2 (May 2022)
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
1844-0835
Pierwsze wydanie
17 May 2013
Częstotliwość wydawania
1 raz w roku
Języki
Angielski
access type Otwarty dostęp

Motion of Inextensible Quaternionic Curves and Modified Korteweg-de Vries Equation

Data publikacji: 02 Jun 2022
Tom & Zeszyt: Tom 30 (2022) - Zeszyt 2 (May 2022)
Zakres stron: 91 - 101
Otrzymano: 10 Aug 2021
Przyjęty: 10 Nov 2021
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
1844-0835
Pierwsze wydanie
17 May 2013
Częstotliwość wydawania
1 raz w roku
Języki
Angielski
Abstract

Many curve evolutions have been determined which are integrable in recent times. The motion of curves can be defined by certain integrable equations including the modified Korteweg-de Vries. In this study, the quaternionic curves in 3 and 4-dimensional Euclidean spaces have been considered and the motions of inextensible quaternionic curves have been characterized by the modified Korteweg-de Vries (mKdV) equations. For this purpose, the basic concepts of the quaternions and quaternionic curves have been summarized. Then the evolutions of inextensible quaternionic curves with reference to the Frenet formulae have been obtained. Finally, the mKdV equations have been generated with the help of their evolutions

Keywords

MSC 2010

[1] D. J. Korteweg, G. De Vries, On the Change of Form of Long Waves Advancing in a Rectangular Canal, and on a New Type of Long Stationary Waves. Philos. Magazine 39 (1895), 422–443. Search in Google Scholar

[2] T. Geyikli, Finite Element Studies of the mKdV Equation[Dissertation]. UK, Bangor, University College of North Wales, 1994. Search in Google Scholar

[3] M. Dehghan, A. Shokri, A Numerical Method for KdV Equation Using Collocation. Nonlinear Dynamics 50 (2007), 111–120. Search in Google Scholar

[4] A. M. Wazwaz, Partial Differential Equations and Solitary Waves Theory. Higher Education Press, Beijing and Springer-Verlag, Berlin Heidelberg, 2009.10.1007/978-3-642-00251-9 Search in Google Scholar

[5] S. Islam, K. Khan, M. A. Akbar, An Analytical Method for Finding Exact Solutions of Modified Kortewegde Vries Equation. Results in Physics 5 (2015), 131–135. Search in Google Scholar

[6] E. Previato, Geometry of the Modified KdV Equation. Lecture Notes in Physics 424 (1993), 43–65.10.1007/BFb0021441 Search in Google Scholar

[7] M. Wadati, The Modified Korteweg-de Vries Equation. J. Phys. Soc. Japan 34(5) (1973), 1289–1296.10.1143/JPSJ.34.1289 Search in Google Scholar

[8] S. Tek, Modified Korteweg-de Vries Surfaces. J. Math. Physics 48 (2007), 013505.10.1063/1.2409523 Search in Google Scholar

[9] C. Rogers, W. K. Schief, Bäcklund and Darboux Transformations, Geometry and Modern Applications in Soliton Theory. Cambridge University Press, 2002.10.1017/CBO9780511606359 Search in Google Scholar

[10] N. Hayashi, P. Naumkin, On the Modified KortewegDe Vries Equation. Math. Phys. Anal. Geom. 4(3) (2001), 197–227.10.1023/A:1012953917956 Search in Google Scholar

[11] W. R. Hamilton, Elements of Quaternions. Chelsea, New York, 1899. Search in Google Scholar

[12] M. Akyiğit, H. H. Kösal, M. Tosun, Split Fibonacci Quaternions. Adv. Appl. Clifford Algebras 23 (2013), 535545.10.1007/s00006-013-0401-9 Search in Google Scholar

[13] K. E. Özen, M. Tosun, Fibonacci Elliptic Biquaternions. Fundam. J. Math. Applications 4(1) (2021), 1016.10.33401/fujma.811058 Search in Google Scholar

[14] K. Bharathi, M. Nagaraj, Quaternion Valued Function of a Real Serret-Frenet Formulae. Indian J. Pure Appl. Mathematics 16 (1985), 741756. Search in Google Scholar

[15] S. Demir, Physical Applications of Complex and Dual Quaternions [Dissertation]. Turkey: Anadolu University, 2003. Search in Google Scholar

[16] Ö. G. Yıldız, Ö. Içer, A Note on Evolution of Quaternionic Curves in the Euclidean Space. Konuralp J. Mathematics 7(2) (2019), 462469. Search in Google Scholar

[17] T. Soyfidan, H. Parlatici, M. A. Güngör, On the Quaternionic Curves According to Parallel Transport Frame. TWMS J. Pure Appl. Mathematics 4(2) (2013), 194203. Search in Google Scholar

Polecane artykuły z Trend MD

Zaplanuj zdalną konferencję ze Sciendo