1. bookTom 30 (2022): Zeszyt 2 (May 2022)
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
1844-0835
Pierwsze wydanie
17 May 2013
Częstotliwość wydawania
1 raz w roku
Języki
Angielski
access type Otwarty dostęp

Negative clean rings

Data publikacji: 02 Jun 2022
Tom & Zeszyt: Tom 30 (2022) - Zeszyt 2 (May 2022)
Zakres stron: 63 - 89
Otrzymano: 09 Jun 2021
Przyjęty: 10 Oct 2021
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
1844-0835
Pierwsze wydanie
17 May 2013
Częstotliwość wydawania
1 raz w roku
Języki
Angielski
Abstract

A ring is called negative clean if the negative (i.e., the additive inverse) of each clean element is also clean. Clean rings are negative clean.

In this paper, we develop the theory of the negative rings, with special emphasis on finding the clean matrices which have (or have not) clean negatives. Many explicit results are proved for 2 × 2 matrices and some hard to solve quadratic Diophantive equations are displayed.

Keywords

MSC 2010

[1] M. S. Ahn, D. D. Anderson Weakly clean rings and almost clean rings. Rocky Mount. J. Math. 36 (2006), 783-798. Search in Google Scholar

[2] D. Alpern https://www.alpertron.com.ar/QUAD.HTM Search in Google Scholar

[3] T. Andreescu, D. Andrica Quadratic Diophantine Equations. Springer 2015.10.1007/978-0-387-54109-9 Search in Google Scholar

[4] W. D. Burgess, R. Raphael On embedding rings in clean rings. Comm. In Algebra 41 (2013), 552-564. Search in Google Scholar

[5] G. Călugăreanu Tripotents: a class of strongly clean elements in rings. Anal. St. Univ. Ovidius Cta., Series Math. vol. 26 (1) (2018), 69-80.10.2478/auom-2018-0003 Search in Google Scholar

[6] G. Călugăreanu Clean integral 2×2 matrices. Studia Sci. Math. Hungarica 55 (1) (2018), 41-52.10.1556/012.2018.55.1.1387 Search in Google Scholar

[7] P. M. Cohn Free Rings and Their Relations. Second ed., Academic Press, 1985. Search in Google Scholar

[8] A. J. Diesl,, S. J. Dittmer, P. P. Nielsen Idempotent lifting and ring extensions. J. of Algebra and Appl. 15 (06) (2016), 11 pages.10.1142/S0219498816501127 Search in Google Scholar

[9] J. Han, W. K. Nicholson Extensions of clean rings. Comm. in Algebra 20 (2001), 2589-2596. Search in Google Scholar

[10] C. Y. Hong, N. K. Kim, Y. Lee Exchange rings and their extensions. J. of Pure and Applied Algebra 179 (1–2) (2003), 117-126.10.1016/S0022-4049(02)00299-2 Search in Google Scholar

[11] V. A. Hiremath, S. Hedge On strongly clean rings. International J. of Algebra 5 (1) (2011), 31-36. Search in Google Scholar

[12] D. Khurana, T. Y. Lam Clean matrices and unit-regular matrices. J of Algebra 280 (2004) 683-698. Search in Google Scholar

[13] P. Kanwar, A. Leroy J. Matczuk Clean elements in polynomial rings. Noncommutative rings and their applications, 197-204, Contemp. Math., 634, Amer. Math. Soc., Providence, RI, 2015.10.1090/conm/634/12699 Search in Google Scholar

[14] K. Matthews http://www.numbertheory.org/php/generalquadratic.html Search in Google Scholar

[15] K. R. Matthews, J. P. Robertson, A. Srinivasan On fundamental solutions of binary quadratic form equations. Acta Arith. 169 (3) (2015), 291-299.10.4064/aa169-3-4 Search in Google Scholar

[16] J. Šter Corner rings of a clean ring need not be clean. Comm. in Algebra 40 (2012), 1595-1604.10.1080/00927872.2011.551901 Search in Google Scholar

[17] J. Šter Weakly clean rings. J. of Algebra 401 (2014), 1-12.10.1016/j.jalgebra.2013.10.034 Search in Google Scholar

Polecane artykuły z Trend MD

Zaplanuj zdalną konferencję ze Sciendo