1. bookTom 30 (2022): Zeszyt 1 (February 2022)
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
1844-0835
Pierwsze wydanie
17 May 2013
Częstotliwość wydawania
1 raz w roku
Języki
Angielski
access type Otwarty dostęp

On the sum of the reciprocals of k-generalized Fibonacci numbers

Data publikacji: 12 Mar 2022
Tom & Zeszyt: Tom 30 (2022) - Zeszyt 1 (February 2022)
Zakres stron: 31 - 42
Otrzymano: 07 May 2021
Przyjęty: 25 Jul 2021
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
1844-0835
Pierwsze wydanie
17 May 2013
Częstotliwość wydawania
1 raz w roku
Języki
Angielski
Abstract

In this note, we that if { Fn(k) }n0 {\left\{ {F_n^{\left( k \right)}} \right\}_{n \ge 0}} denotes the k-generalized Fibonacci sequence then for n ≥ 2 the closest integer to the reciprocal of mn1/Fm(k) \sum\nolimits_{m \ge n} {1/F_m^{\left( k \right)}} is Fn(k)Fn1(k) F_n^{\left( k \right)} - F_{n - 1}^{\left( k \right)} .

Keywords

MSC 2010

[1] J. J. Bravo and F. Luca. “On a conjecture about repdigits in k-generalized Fibonacci sequences”, Publ. Math. Debrecen 82(2013), 623–639.10.5486/PMD.2013.5390 Search in Google Scholar

[2] G. P. B. Dresden and Z. Du, “A simplified Binet formula for k-generalized Fibonacci numbers”, J. Integer Seq. 17 (2014), no. 4, Article 14.4.7. Search in Google Scholar

[3] S. Holliday and T. Komatsu, “On the sum of reciprocal generalized Fibonacci number”, Integers 11 (2011), 441–455.10.1515/integ.2011.031 Search in Google Scholar

[4] H. Ohtsuka and S. Nakamura, “On the sum of reciprocal Fibonacci numbers”, Fibonacci Quart. 46/47 (2008/2009), 153–159. Search in Google Scholar

[5] W. Zhang and T. Wang, “The infinite reciprocal sum of Pell numbers”, Appl. Mathematics and Computation, 218 (2012), 6164–6167.10.1016/j.amc.2011.11.090 Search in Google Scholar

Polecane artykuły z Trend MD

Zaplanuj zdalną konferencję ze Sciendo