Otwarty dostęp

Meat (Longissimus lumborum Muscle) Quality in Males of the Family Cervidae


Zacytuj

1. Ahmad, R. S., Imran, A., & Hussain, M. B. (2018). Nutritional Composition of Meat. In M. S. Arshad (Ed.), Meat Science and Nutrition. London: IntechOpen. Retrieved July 12, 2022, from: 10.5772/intechopen.77045.10.5772/intechopen.77045 Search in Google Scholar

2. AOAC. (2005). Official method of Analysis (18th ed.)., Washington DC: Association of Officiating Analytical Chemists Search in Google Scholar

3. Barón, C. L. C., Santos-Donado, P. R., Ramos, P. M., Donado-Pestana, C. M., Delgado, E. F., & Contreras-Castillo, C. J. (2021). Influence of ultimate pH on biochemistry and quality of Longissimus lumborum steaks from Nellore bulls during ageing. International Journal of Food Science and Technology, 56, 3333–3343. DOI: 10.1111/ijfs.14955. Open DOISearch in Google Scholar

4. Bouvard, V., Loomis, D., Guyton, K. Z., Grosse, Y., El Ghissassi, F., Benbrahim-Tallaa, L., Guha, N., Mattock, H., & Straif, K. (2015). International Agency for Research on Cancer Monograph Working Group. Carcinogenicity of consumption of red and pro-cessed meat. Lancet Oncology, 16(16), 1599–600. DOI: 10.1016/S1470-2045(15)00444-1.26514947 Open DOISearch in Google Scholar

5. Briggs, M. A., Petersen, K. S., & Kris-Etherton, P. M. (2017). Saturated Fatty Acids and Cardiovascular Disease: Replacements for Saturated Fat to Reduce Cardiovascular Risk. Healthcare, 5(2), 29. pii: E29. DOI: 10.3390/healthcare5020029.549203228635680 Open DOISearch in Google Scholar

6. Carta, G., Murru, E., Banni, S., & Manca, C. (2017). Palmitic Acid: Physiological Role, Metabolism and Nutritional Implications. Frontiers in Physiology, 8, Article 902. DOI: 10.3389/fphys.2017.00902.568233229167646 Open DOISearch in Google Scholar

7. Carta, G., Murru, E., Lisai, S., Sirigu, A., Pira, A., Collu, M., Batetta, B., Gambelli, L., & Banni, S. (2015). Dietary triacylglycerols with palmitic acid in the sn-2 position modulate levels of N-acylethanolamides in rat tissues. PLoS ONE, 10(3), Article e0120424. DOI: 10.1371/journal.pone.0120424.436161125775474 Open DOISearch in Google Scholar

8. Chen, J., & Liu, H. (2020). Nutritional Indices for Assessing Fatty Acids: A Mini-Review. International Journal of Molecular Sciences, 21(16), Article 5695. DOI: 10.3390/ijms21165695.746085632784511 Open DOISearch in Google Scholar

9. Commission Internationale de L’Éclairage (CIE). (1978). Recommendations on Uniform Color Spaces-Color Difference Equations: Psychometric Color Terms; Supplement No. 2 to CIE Publication No. 15 (E-1.3.1.), 1971/(TC-1-3). Paris, France: CIE. Search in Google Scholar

10. Cordain, L., Watkins, B., Florant, G., Kelher, M., & Rogers, L., Li, Y. (2002). Fatty acid analysis of wild ruminant tissues: evolutionary implications for reducing diet-related chronic disease. European Journal of Clinical Nutrition, 56, 181–191. DOI: 10.1038/sj.ejcn.1601307.11960292 Open DOISearch in Google Scholar

11. Darwish, W. S., Ikenaka, Y., Morshdy, A. E., Eldesoky, K. I., Nakayama, S., Mizukawa, H., & Ishizuka, M. (2016). β-carotene and retinol contents in the meat of herbivorous ungulates with a special reference to their public health importance. Journal of Veterinary Medical Science, 78(2), 351–354. DOI: 10.1292/jvms.15-0287.478513426498400 Open DOISearch in Google Scholar

12. Daszkiewicz, T., Kubiak, D., Winarski, R., & Koba-Kowalczyk, M. (2012). The effect of gender on the quality of roe deer (Capreolus capreolus L.) meat. Small Ruminant Research, 103(2-3), 169–175. DOI: 10.1016/j.smallrumres.2011.09.044. Open DOISearch in Google Scholar

13. Daszkiewicz, T., Murawska, D., Kubiak, D., & Han J. (2022). Chemical Composition and Fatty Acid Profile of the Pectoralis major Muscle in Broiler Chickens Fed Diets with Full-Fat Black Soldier Fly (Hermetia illucens) Larvae Meal. Animals, 12(4), 464. DOI: 10.3390/ani12040464.886838035203172 Open DOISearch in Google Scholar

14. De Smet, S., Raes, K., & Demeyer, D. (2004). Meat fatty acid composition as affected by fatness and genetic factors: a review. Animal Research, 53(2), 81–98. DOI: 10.1051/animres:2004003. Open DOISearch in Google Scholar

15. Demesko, J., Markowski, J., Demesko, E., Słaba, M., Hejduk, J., & Minias, P. (2019). Ecotype Variation in Trace Element Content of Hard Tissues in the European Roe Deer (Capreolus capreolus). Archives of Environmental Contamination and Toxicology, 76, 76–86. DOI: 10.1007/s00244-018-0580-4.632699530443665 Open DOISearch in Google Scholar

16. Demeyer, D., Mertens, B., De Smet, S., & Ulens, M. (2016). Mechanisms linking colorectal cancer to the consumption of (processed) red meat: a review. Critical Reviews in Food Science and Nutrition, 56: 2747–2766. DOI: 10.1080/10408398.2013.873886.25975275 Open DOISearch in Google Scholar

17. Dietschy, J. M. (1998). Dietary fatty acids and the regulation of plasma low density lipoprotein cholesterol concentrations. Journal of Nutrition, 128(2), 444S–448S. DOI: 10.1093/jn/128.2.444S.9478045 Open DOISearch in Google Scholar

18. du Toit, E., & Oguttu, J. W. (2013). Calpain and Calpastatin Activity Post Mortem and Meat Tenderness: Are the Two Related? Journal of Animal and Veterinary Advances, 12, 683–688. DOI: 10.36478/javaa.2013.683.688. Open DOISearch in Google Scholar

19. Guasch-Ferré, M., Zong, G., Willett, W. C., Zock, P. L., Wanders, A. J., Hu, F. B., & Sun, Q. (2019). Associations of Monounsaturated Fatty Acids From Plant and Animal Sources With Total and Cause-Specific Mortality in Two US Prospective Cohort Studies. Circulation Research, 124(8), 1266–1275. DOI: 10.1161/CIRCRESAHA.118.313996.645972330689516 Open DOISearch in Google Scholar

20. Hamm, R. (1956). Fleischmineralien und Fleischqualitt. Fleischwirtschaft, 5, 266–269. Search in Google Scholar

21. Henchion, M., Hayes, M., Mullen, A. M., Fenelon, M., & Tiwari, B. (2017). Future Protein Supply and Demand: Strategies and Factors Influencing a Sustainable Equilibrium. Foods, 6(7), Article 53. DOI: 10.3390/foods6070053.553256028726744 Open DOISearch in Google Scholar

22. Hoffman, L. C. (2001). The effect of different culling methodologies on the physical meat quality attributes of various game species. In H. Ebedes, B. Reilly, W. van Hoven, & B. Penzhorn (Eds.), Proceedings of the 5th international wildlife ranching symposium sustainable utilization – conservation in practice (pp. 212–221). Nelson Mandela Metropolitan University, Port Elizabeth. Search in Google Scholar

23. Hoffman, L. C., & Wiklund, E. (2006). Game and venison – meat for the modern consumer. Meat Science, 74(1), 197–208. DOI: 10.1016/j.meatsci.2006.04.005.22062729 Open DOISearch in Google Scholar

24. Honikel, K. O. (1998). Reference methods for the assessment of physical characteristics of meat. Meat Science, 49(4), 447–457. DOI: 10.1016/S0309-1740(98)00034-5.22060626 Open DOISearch in Google Scholar

25. Hutchison, C. L., Mulley, R. C., Wiklund, E., & Flesch, J. S. (2010). Consumer evaluation of venison sensory quality: Effects of sex, body condition score and carcase suspension method. Meat Science, 86, 311–316. DOI: 10.1016/j.meatsci.2010.04.031.20579815 Open DOISearch in Google Scholar

26. Ivanović, S., Pisinov, B., Pavlović, M., & Pavlović, I. (2020). Quality of Meat from Female Fallow Deer (Dama Dama) and Roe Deer (Capreolus Capreolus) Hunted in Serbia. Annals of Animal Science, 20(1), 245–262. DOI: 10.2478/aoas-2019-0064. Open DOISearch in Google Scholar

27. Janík, T., Peters, W., Šálek, M., Romportl, D., Jirků, M., Engleder, T., Ernst, M., Neudert, J., & Heurich, M. (2021). The declining occurrence of moose (Alces alces) at the southernmost edge of its range raise conservation concerns. Ecology and Evolution, 11(10): 5468–5483. DOI: 10.1002/ece3.7441.813179334026021 Open DOISearch in Google Scholar

28. Jankowska, B., Żmijewski, T., Kwiatkowska, A., & Korzeniowski, W. (2005). The composition and properties of beaver (Castor fiber) meat. European Journal of Wildlife Research, 51, 283–286. DOI: 10.1007/s10344-005-0102-3. Open DOISearch in Google Scholar

29. Jenkins, T. C., Wallace, R. J., Moate, P. J., & Mosley, E. E. (2008). Board-invited review: Recent advances in biohydrogenation of unsaturated fatty acids within the rumen microbial ecosystem. Journal of Animal Science, 86(2), 397–412. DOI: 10.2527/jas.2007-0588.18042812 Open DOISearch in Google Scholar

30. Joo, S. T., Kim, G. D., Hwang, Y. H., & Ryu, Y. C. (2013). Control of fresh meat quality through manipulation of muscle fiber characteristics. Meat Science, 95(4), 828–836. DOI: 10.1016/j.meatsci.2013.04.044.23702339 Open DOISearch in Google Scholar

31. Juárez, M., Lam, S., Bohrer, B. M., Dugan, M. E. R., Vahmani, P., Aalhus, J., Juárez, A., López-Campos, O., Prieto, N., & Segura, J. (2021). Enhancing the Nutritional Value of Red Meat through Genetic and Feeding Strategies. Foods, 10(4), Article 872. DOI: 10.3390/foods10040872.807387833923499 Open DOISearch in Google Scholar

32. Kerry, J., Kerry, J., & Ledward, D. (2002). Meat processing. Improving quality (pp. 35–37). Abington, Cambridge, England: Woodhead Publishing Limited Abington Hall.10.1201/9781439823163 Search in Google Scholar

33. Kim, G. -D., Jeong J. -Y., Jung E. -Y., Yang H. -S., Lim H. -T., & Joo S. -T. (2013). The influence of fiber size distribution of type IIB on carcass traits and meat quality in pigs. Meat Science, 94(2), 267–273. DOI: 10.1016/j.meatsci.2013.02.001.23523735 Open DOISearch in Google Scholar

34. Klont, R. E., Brocks, L., & Eikelenboom, G. (1998). Muscle fibre type and meat quality. Meat Science, 49(Supplement 1), 98, S219–S229. DOI: 10.1016/S0309-1740(98)90050-X. Open DOISearch in Google Scholar

35. Kudrnáčová, E., Bartoň, L., Bureš, D., & Hoffman, L. C. (2018). Carcass and meat characteristics from farm-raised and wild fallow deer (Dama dama) and red deer (Cervus elaphus): A review. Meat Science, 141, 9–27. DOI: 10.1016/j.meatsci.2018.02.020.29558697 Open DOISearch in Google Scholar

36. Kulczyński, B., Sidor, A., & Gramza-Michałowska, A. (2019). Characteristics of Selected Antioxidative and Bioactive Compounds in Meat and Animal Origin Products. Antioxidants, 8(9), Article 335. DOI: 10.3390/antiox8090335.676983831443517 Open DOISearch in Google Scholar

37. Lucarini, M., Durazzo, A., Sciubba, F., Di Cocco, M. E., Gianferri, R., Alise, M., Santini, A., Delfini, M., & Lombardi-Boccia, G. (2020). Stability of the Meat Protein Type I Collagen: Influence of pH, Ionic Strength, and Phenolic Antioxidant. Foods, 9(4), Article 480. DOI: 10.3390/foods9040480.723129132290387 Open DOISearch in Google Scholar

38. Luz Fernandez, M., & West, K. L. (2005). Mechanisms by which Dietary Fatty Acids Modulate Plasma Lipids. Journal of Nutrition, 135(9), 2075–2078. DOI: 10.1093/jn/135.9.2075.16140878 Open DOISearch in Google Scholar

39. Mcafee, A. J., Mcsorley, E. M., Cuskelly, G. J., Moss, B. W., Wallace, J. M. W., Bonham, M. P., & Fearon, A. M. (2010). Red meat consumption: an overview of the risks and benefits. Meat Science, 84(1), 1–13. DOI: 10.1016/j.meatsci.2009.08.029.20374748 Open DOISearch in Google Scholar

40. McNeill, S. H. (2014). Inclusion of red meat in healthful dietary patterns. Meat Science, 98(3), 452–460. DOI: 10.1016/j.meatsci.2014.06.028.25034452 Open DOISearch in Google Scholar

41. Melton, S. L. (1990). Effects of feeds on flavor of red meat: a review. Journal of Animal Science, 68(12), 4421–4435. DOI: 10.2527/1990.68124421x.2286578 Open DOISearch in Google Scholar

42. Milczarek, A., Janocha, A., Niedziałek, G., Zowczak-Romanowicz, M, Horoszewicz, E., & Piotrowski, S. (2021). Health-Promoting Properties of the Wild-Harvested Meat of Roe Deer (Capreolus capreolus L.) and Red Deer (Cervus elaphus L.). Animals, 11(7), Article 2108. DOI: 10.3390/ani11072108.830023934359237 Open DOISearch in Google Scholar

43. Milovanovic, B. R., Djekic, I. V., Tomović, V. M., Vujadinović, D., & Tomasevic, I. B. (2021). Color measurement of animal source foods. Theory and practice of meat processing, 6(4), 311–319. DOI: 10.21323/2414-438X-2021-6-4-311-319. Open DOISearch in Google Scholar

44. Neethling, J., Hoffman, L. C., & Muller, M. (2016). Factors influencing the flavour of game meat: A review. Meat Science, 113, 2016, 139–153. DOI: 10.1016/j.meatsci.2015.11.022.26658009 Open DOISearch in Google Scholar

45. Nuernberg, K., Dannenberger, D., Nuernberg, G., Ender, K., Voigt, J., Scollan, N. D., Wood, J. D., Nute, G. R., & Richardson, R. I. (2005). Effect of a grass-based and a concentrate feeding system on meat quality characteristics and fatty acid composition of longissimus muscle in different cattle breeds. Livestock Production Science, 94(1–2), 137–147. DOI: 10.1016/j.livprodsci.2004.11.036. Open DOISearch in Google Scholar

46. O’Connor, L. E., Kim, J. E., & Campbell, W. W. (2017). Total red meat intake of ≥0.5 servings/d does not negatively influence cardiovascular disease risk factors: a systemically searched meta-analysis of randomized controlled trials. American Journal of Clinical Nutrition, 105(1), 57–69. DOI: 10.3945/ajcn.116.142521.518373327881394 Open DOISearch in Google Scholar

47. OECD/FAO. (2021). OECD-FAO Agricultural Outlook 2021-2030 (pp. 171, 274–275). Paris, France: OECD Publishing. DOI: 10.1787/19428846-en. Open DOISearch in Google Scholar

48. Official Journal of the European Union (OJEU). (2010). Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes. L 276/33. Search in Google Scholar

49. Pan, A., Sun, Q., Bernstein, A. M., Schulze, M. B., Manson, J. E., Willett, W. C., & Huet, F. B. (2011). Red meat consumption and risk of type 2 diabetes: 3 cohorts of US adults and an updated meta-analysis. American Journal of Clinical Nutrition, 94(4), 1088–1096. DOI: 10.3945/ajcn.111.018978 pmid:21831992.317302621831992 Open DOISearch in Google Scholar

50. Papier, K., Knuppel, A., Syam, N., Jebb, S. A., & Key, T. J. (2021). Meat consumption and risk of ischemic heart disease: A systematic review and meta-analysis. Critical Reviews in Food Science and Nutrition. DOI: 10.1080/10408398.2021.1949575.34284672 Open DOISearch in Google Scholar

51. Poławska, E., Cooper, R. G., Jóźwik, A., & Pomianowski, J. (2013). Meat from alternative species – nutritive and dietetic value, and its benefit for human health – a review. CyTA - Journal of Food, 11(1), 37–42. DOI: 10.1080/19476337.2012.680916. Open DOISearch in Google Scholar

52. Popoola, I. O., Soladoye, P. O., Gaudette, N. J., & Wismer, W. V. (2020). A Review of Sensory and Consumer-related Factors Influencing the Acceptance of Red Meats from Alternative Animal Species. Food Reviews International. DOI: 10.1080/87559129.2020.1860084. Open DOISearch in Google Scholar

53. Puolanne, E., & Halonen, M. (2010). Theoretical aspects of water-holding in meat. Meat Science, 86(1), 151–165. DOI: 10.1016/j.meatsci.2010.04.038.20627421 Open DOISearch in Google Scholar

54. Purchas, R. W., & Aungsupakorn, R. (1993). Further investigations into the relationship between ultimate pH and tenderness for beef samples from bulls and steers. Meat Science, 34(2), 163–178. DOI: 10.1016/0309-1740(93)90025-D.22060661 Open DOISearch in Google Scholar

55. Rautiainen, H., Bergvall, U. A., Felton, A. M., Tigabu, M., & Kjellander, P. (2021). Nutritional niche separation between native roe deer and the nonnative fallow deer - a test of interspecific competition. Mammal Research Mammal Research, 66, 443–455. DOI: 10.1007/s13364-021-00571-w. Open DOISearch in Google Scholar

56. Sabow, A. B., Zulkifli, I., Goh, Y. M., Ab Kadir, M. Z. A., Kaka, U., Imlan, J. C., Abubakar, A. A., Adeyemi, K. D., & Sazili, A. Q. (2016). Bleeding Efficiency, Microbiological Quality and Oxidative Stability of Meat from Goats Subjected to Slaughter without Stunning in Comparison with Different Methods of Pre-Slaughter Electrical Stunning. PLoS ONE, 11(4): e0152661. DOI: 10.1371/journal.pone.0152661.481797827035716 Open DOISearch in Google Scholar

57. Salles, M. S. V., Zanetti, M. A., Negrão, J. A., Salles, F. A., Ribeiro, T. M. C., Netto, A. S., & Del Claro, G. R. (2012). Metabolic changes in ruminant calves fed cation-anion diets with different proportions of roughage and concentrate. Revista Brasileira de Zootecnia, 41(2), 414–420. DOI: 10.1590/S1516-35982012000200026. Open DOISearch in Google Scholar

58. Sanders, L. M., Wilcox, M. L., & Maki, K. C. (2022). Red meat consumption and risk factors for type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials. European Journal of Clinical Nutrition. DOI: 10.1038/s41430-022-01150-1.35513448 Open DOISearch in Google Scholar

59. Scollan, N. D., Dannenberger, D., Nuernberg, K., Richardson, I., MacKintosh, S., Hocquette, J. F., & Moloney, A. P. (2014). Enhancing the nutritional and health value of beef lipids and their relationship with meat quality. Meat Science, 97(3), 384–394. DOI: 10.1016/j.meatsci.2014.02.015.24697921 Open DOISearch in Google Scholar

60. Scollan, N., Hocquette, J., Nuernberg, K., Dannenberger, D., Richardson, I., & Moloney, A. (2006). Innovations in beef production systems that enhance the nutritional and health value of beef lipids and their relationship with meat quality. Meat Science, 74(1), 17–33. DOI: 10.1016/j.meatsci.2006.05.002.22062713 Open DOISearch in Google Scholar

61. Serrano, M. P., Maggiolino, A., Landete-Castillejos, T., Pateiro, M., Barbería, J. P., Fierro, Y., Domínguez, R., Gallego, L., García, A., De Palo, P., & Lorenzo, J. M. (2020). Quality of main types of hunted red deer meat obtained in Spain compared to farmed venison from New Zealand. Scientific Reports, 10, Article 12157. DOI: 10.1038/s41598-020-69071-2.737605932699311 Open DOISearch in Google Scholar

62. Simonne, A. H., Green, N. R., & Bransby, D. I. (1996). Consumer acceptability and β-carotene content of beef as related to cattle finishing diets. Journal of Food Science, 61(6), 1254–1256. DOI: 10.1111/j.1365-2621.1996.tb10973.x. Open DOISearch in Google Scholar

63. Smith, N. W., Fletcher, A. J., Hill, J. P., & McNabb, W. C. (2022). Modeling the Contribution of Meat to Global Nutrient Availability. Frontiers in Nutrition, 9. Article 766796. DOI: 10.3389/fnut.2022.766796.884920935187029 Open DOISearch in Google Scholar

64. Sokoła-Wysoczańska, E., Wysoczański, T., Wagner, J., Czyż, K., Bodkowski, R., Lochyński, S., & Patkowska-Sokoła, B. (2018). Polyunsaturated Fatty Acids and Their Potential Therapeutic Role in Cardiovascular System Disorders-A Review. Nutrients, 10(10), 1561. DOI: 10.3390/nu10101561.621344630347877 Open DOISearch in Google Scholar

65. Song, S., Ahn, C. -H., Song, M., & Kim, G. -D. (2021). Pork Loin Chop Quality and Muscle Fiber Characteristics as Affected by the Direction of Cut. Foods, 10(1), 43. DOI: 10.3390/foods10010043.782346733375235 Open DOISearch in Google Scholar

66. Soriano, A., & Sánchez-García, C. (2021). Nutritional Composition of Game Meat from Wild Species Harvested in Europe. In C. L. Ranabhat (Ed.), Meat and Nutrition. London, England: IntechOpen. DOI: 10.5772/intechopen.97763. Open DOISearch in Google Scholar

67. Strazdina, V., Jemeljanovs, A., & Šterna, V. (2012). Fatty Acids Composition of Elk, Deer, Roe Deer and Wild Boar Meat Hunted in Latvia. World Academy of Science, Engineering and Technology. International Journal of Animal and Veterinary Sciences, 6(9), 765–768. DOI: 10.5281/zenodo.1071826. Open DOISearch in Google Scholar

68. Strazdina, V., Jemeljanovs, A., & Šterna, V. (2013). Nutrition Value of Wild Animal Meat. Proceedings of the Latvian Academy of Sciences. Section B. Natural, Exact, and Applied Sciences., 67(4-5): 373–377. DOI: 10.2478/prolas-2013-0074. Open DOISearch in Google Scholar

69. Tänavots, A., Põldvere, A., Torp, J., Soidla, R., Mahla, T., Andreson, H., & Lepasalu, L. (2015). Effect of age on composition and quality of Longissimus thoracis muscle of the moose (Alces alces L.) harvested in Estonia. Agronomy Research, 13(4), 1131–1142. Search in Google Scholar

70. Taylor, R. G., Labas, R., Smulders, F. J. M, & Wiklund, E. (2002). Ultrastructural changes during aging in Longissimus thoracis from moose and reindeer. Meat Science, 60(4), 321–326. DOI: 10.1016/S0309-1740(01)00120-6.22063633 Open DOISearch in Google Scholar

71. TIBCO Software Inc. (2017). Statistica [data analysis software system], version 13.3. http://statistica.io. Search in Google Scholar

72. Tufeanu, R., & Tiţa, O. (2016). Possibilities to develop low-fat products: a review. Acta Universitatis Cibiniensis. Series E: Food Technology, 20(1), 3–19. DOI: 10.1515/aucft-2016-0001. Open DOISearch in Google Scholar

73. U.S. Department of Agriculture & U.S. Department of Health and Human Services (USDA & HHS). (2020). Dietary Guidelines for Americans, 2020-2025. 9th Edition. December 2020. Retrieved July 12, 2022, from: https://www.dietaryguidelines.gov/. Search in Google Scholar

74. Valencak, T. G., Gamsjäger, L., Ohrnberger, S., Culbert, N. J., & Ruf, T. (2015). Healthy n-6/n-3 fatty acid composition from five European game meat species remains after cooking. BMC Res Notes, 8, 273. DOI: 10.1186/s13104-015-1254-1.448321526116375 Open DOISearch in Google Scholar

75. Van Oeckel, M. J., Warnants, N., Boucqueé, C. V. (1999). Comparison of different methods for measuring water holding capacity and juiciness of pork versus on-line screening methods. Meat Science, 51, 313–320. DOI: 10.1016/S0309-1740(98)00123-5.22062025 Open DOISearch in Google Scholar

76. Van, T. T. H., Yidana, Z., Smooker, P. M., & Coloe, P. J. (2020). Antibiotic use in food animals worldwide, with a focus on Africa: Pluses and minuses. Journal of Global Antimicrobial Resistance, 20, 170–177. DOI: 10.1016/j.jgar.2019.07.031.31401170 Open DOISearch in Google Scholar

77. Watanabe, A., Daly, C. C., & Devine, C. E. (1996). The effects of the ultimate pH of meat on tenderness changes during ageing. Meat Science, 42(1), 67–78. DOI: 10.1016/0309-1740(95)00012-7.22060302 Open DOISearch in Google Scholar

78. Whitton, C., Bogueva, D., Marinova, D., & Phillips, C. J. C. (2021). Are We Approaching Peak Meat Consumption? Analysis of Meat Consumption from 2000 to 2019 in 35 Countries and Its Relationship to Gross Domestic Product. Animals, 11(12), Article 3466 DOI: 10.3390/ani11123466.869788334944243 Open DOISearch in Google Scholar

79. Williams, P. (2007). Nutritional composition of red meat. Nutrition & Dietetics, 64 (Suppl. 4), S113–S119. DOI: 10.1111/j.1747-0080.2007.00197.x. Open DOISearch in Google Scholar

80. Wood, J. D., Enser, M., Fisher, A. V., Nute, G. R., Sheard, P. R., Richardson, R. I., Hughes, S. I., & Whittington, F. M. (2008). Fat deposition, fatty acid composition and meat quality: A review. Meat Science, 78(4), 343–358. DOI: 10.1016/j.meatsci.2007.07.019.22062452 Open DOISearch in Google Scholar

81. Wood, J. D., Richardson, R. I., Nute, G. R., Fisher, A. V., Campo, M. M., Kasapidou, E., Sheard, P. R., & Enser, M. (2004). Effects of fatty acids on meat quality: a review. Meat Science 66(1), 21–32. DOI: 10.1016/S0309-1740(03)00022-6.22063928 Open DOISearch in Google Scholar

82. World Cancer Research Fund International. (2018). Recommendations and public health and policy implications. Retrieved July 12, 2022, from: https://www.wcrf.org/sites/default/files/Recommendations.pdf. Search in Google Scholar

83. Zhang, X., Owens, C. M., & Schilling, M. W. (2017). Meat: the edible flesh from mammals only or does it include poultry, fish, and seafood? Animal Frontiers, 7(4), 12–18. https://doi.org/10.2527/af.2017.0437.10.2527/af.2017.0437 Search in Google Scholar

84. Żochowska-Kujawska, J., Sobczak, M., & Lachowicz, K. (2009). Comparison of the texture, rheological properties and myofibre characteristics of sm (semimembranosus) muscle of selected species of game animals. Polish Journal of Food and Nutrition Sciences, 59(3), 243–246. Search in Google Scholar

85. Zong, G., Li Y., Sampson, L., Dougherty, L. W., Willett, W. C., Wanders, A. J., Alssema, M., Zock, P. L., Hu, F. B., & Sun, Q. (2018). Monounsaturated fats from plant and animal sources in relation to risk of coronary heart disease among US men and women. The American Journal of Clinical Nutrition, 107(3), 445–453. DOI: 10.1093/ajcn/nqx004.587510329566185 Open DOISearch in Google Scholar

eISSN:
2344-150X
Język:
Angielski
Częstotliwość wydawania:
2 razy w roku
Dziedziny czasopisma:
Industrial Chemistry, other, Food Science and Technology