[
1. AOAC Guidelines for single laboratory validation of chemical methods for dietary supplements and botanicals (2013), AOAC Int. 1–38.
]Search in Google Scholar
[
2. Barison, A., Da Silva, C.W.P., Campos, F.R., Simonelli, F., Lenz, C.A. & Ferreira. A.G. (2010). A simple methodology for the determination of fatty acid composition in edible oils through 1H NMR spectroscopy. Magn. Reson. Chem., 48(8), 642–650. DOI: 10.1002/mrc.2629.20589730
]Otwórz DOISearch in Google Scholar
[
3. Bartošová, A. & Štefko. T. (2017). Gas Chromatographic Determination of Fatty Acids in Oils with Regard to the Assessment of Fire Hazard. Res. Pap. Fac. Mater. Sci. Technol. Slovak Univ. Technol. 25, 73–81. DOI: 10.1515/rput-2017-0009.
]Otwórz DOISearch in Google Scholar
[
4. Blumhorst, M.R., Venkitasubramanian, P. & Collison, M.W. (2011). Direct determination of glycidyl esters of fatty acids in vegetable Oils by LC-MS. JAOCS. J. Am. Oil Chem. Soc., 88(9), 1275–1283. DOI: 10.1007/s11746-011-1873-1.314332321909156
]Otwórz DOISearch in Google Scholar
[
5. Carvalho, M.S., Mendonça, M.A., Pinho, D.M.M., Resck, I.S. & Suarez, P.A.Z. (2012). Chromatographic analyses of fatty acid methyl esters by HPLC-UV and GC-FID. J. Braz. Chem. Soc., 23(4), 763–769. DOI: 10.1590/S0103-50532012000400023.
]Otwórz DOISearch in Google Scholar
[
6. Council of Europe (2017). European Pharmacopoeia 9th edition.
]Search in Google Scholar
[
7. Freitas, H.R. (2017). Chlorella vulgaris as a Source of Essential Fatty Acids and Micronutrients: A Brief Commentary. The Open Plant Science Journal, 10(1), 92-99. DOI: 10.2174/1874294701710010092.
]Otwórz DOISearch in Google Scholar
[
8. Khoury, S., Canlet, C., Lacroix, M.Z., Berdeaux, O., Jouhet, J. & Bertrand-Michel, J. (2018). Quantification of lipids: Model. reality. and compromise. Biomolecules, 8(4), 174. DOI: 10.3390/biom8040174.631682830558107
]Otwórz DOISearch in Google Scholar
[
9. Klug, L. & Daum, G. (2014). Yeast lipid metabolism at a glance. FEMS Yeast Res., 14(3), 369–388. DOI: 10.1111/1567-1364.12141.24520995
]Otwórz DOISearch in Google Scholar
[
10. Marcone, M.F., Wang, S., Albabish, W., Nie, S., Somnarain, D. & Hill. A. (2013). Diverse food-based applications of nuclear magnetic resonance (NMR) technology. Food Res. Int., 51(2), 729–747. DOI: 10.1016/j.foodres.2012.12.046.
]Otwórz DOISearch in Google Scholar
[
11. Martin, C.E., Oh, C.S. & Jiang, Y. (2007). Regulation of long chain unsaturated fatty acid synthesis in yeast. Biochim. Biophys. Acta - Mol. Cell Biol. Lipids, 1771(3), 271–285. DOI: 10.1016/j.bbalip.2006.06.010.16920014
]Otwórz DOISearch in Google Scholar
[
12. Miranda, A.M., Castilho-Almeida, E.W., Martins Ferreira, E.H., Moreira, G.F., Achete, C.A., Armond, R.A.S.Z., Dos Santos, H.F. & Jorio, A. (2014). Line shape analysis of the Raman spectra from pure and mixed biofuels esters compounds. Fuel, 115, 118–125. DOI: 10.1016/j.fuel.2013.06.038.
]Otwórz DOISearch in Google Scholar
[
13. Nyiri, Z., Novák, M., Bodai, Z., Petrovics, N., Eke, Z. (2017). Determination of polycyclic aromatic hydrocarbons in infant formula using solid state urea clathrate formation with gas chromatography – tandem mass spectrometry. Talanta, 174, 214–220. DOI: 10.1016/j.talanta.2017.05.065.28738571
]Otwórz DOISearch in Google Scholar
[
14. Petrović, M., Kezić, N. & Bolanča. V. (2010). Optimization of the GC method for routine analysis of the fatty acid profile in several food samples. Food Chem, 122(1), 285–291. DOI: 10.1016/j.foodchem.2010.02.018.
]Otwórz DOISearch in Google Scholar
[
15. Potocki, L., Baran, A., Oklejewicz, B., Szpyrka, E., Podbielska, M. & Schwarzbacherová, V. (2020). Synthetic Pesticides Used in Agricultural Production Promote Genetic Instability and Metabolic Variability in Candida spp. Genes, 11(8), 848. DOI: 10.3390/genes11080848.746377032722318
]Otwórz DOISearch in Google Scholar
[
16. Ren, J., Mozurkewich, E.; Sen, A., Vahratian, A., Ferreri, T., Morse, A. & Djuric, Z. (2013). Total Serum Fatty Acid Analysis by GC-MS: Assay Validation and Serum Sample Stability. Curr. Pharm. Anal., 9(4), 331–339. DOI: 10.2174/1573412911309040002.412375725110470
]Otwórz DOISearch in Google Scholar
[
17. Rogóż, J., Podbielska, M., Szpyrka, E. & Wnuk, M. (2021). Characteristics of Dietary Fatty Acids Isolated from Historic Dental Calculus of the 17th- and 18th-Century Inhabitants of the Subcarpathian Region (Poland). Molecules, 26(10), 2951. DOI: 10.3390/molecules26102951.815589134063539
]Otwórz DOISearch in Google Scholar
[
18. Rousseaux, M.C., Cherbiy-Hoffmann, S.U., Hall, A.J. & Searles, P.S. (2020). Fatty acid composition of olive oil in response to fruit canopy position and artificial shading. Sci. Hortic., 271, 109477. DOI: 10.1016/j.scienta.2020.109477.
]Otwórz DOISearch in Google Scholar
[
19. Schiavon, S., Pellattiero, E., Cecchinato, A., Tagliapietra, F., Dannenberger, D., Nuernberg, K., Nuernberg, G. & Bittante, G. (2016). The influence of different sample preparation procedures on the determination of fatty acid profiles of beef subcutaneous fat. liver and muscle by gas chromatography. J. Food Compos. Anal., 50, 10–18. DOI: 10.1016/j.jfca.2016.05.001.
]Otwórz DOISearch in Google Scholar
[
20. Schwarzinger, B., Feichtinger, M., Blank-Landeshammer, B., Weghuber, J. & Schwarzinger, C. (2022). Quick determination of erucic acid in mustard oils and seeds. Journal of Analytical and Applied Pyrolysis, 164, 105523. DOI: 10.1016/j.jaap.2022.105523.
]Otwórz DOISearch in Google Scholar
[
21. Sherazi, S.T.H., Arain, S., Mahesar, S.A., Bhanger, M.I. & Khaskheli, A.R. (2013). Erucic acid evaluation in rapeseed and canola oil by Fourier transform-infrared spectroscopy. Eur. J. Lipid Sci. Technol., 115(5), 535–540. DOI: 10.1002/ejlt.201200272.
]Otwórz DOISearch in Google Scholar
[
22. Simopoulos, AP. (2008). The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp Biol Med (Maywood), 233(6), 674-88. DOI: 10.3181/0711-MR-311.18408140
]Otwórz DOISearch in Google Scholar
[
23. Słowik-Borowiec, M., Zdeb, G., Kuras, W. & Książek-Trela, P. (2022). Influence of Bacillus subtilis fermentation on content of selected macronutrients in seeds and beans. Acta Universitatis Cibiniensis. Series E: Food Technology, 26(1), 123-138. DOI: 10.2478/aucft-2022-0010.
]Otwórz DOISearch in Google Scholar
[
24. Syed, M.B. (2017). Analysis of biodiesel by high performance liquid chromatography using refractive index detector. MethodsX, 4, 256–259. DOI: 10.1016/j.mex.2017.07.002.
]Otwórz DOISearch in Google Scholar
[
25. Szpyrka, E., Broda, D., Oklejewicz, B., Podbielska, M., Slowik-Borowiec, M., Jagusztyn, B., Chrzanowski, G., Kus-Liskiewicz, M., Duda, M., Zuczek, J., Wnuk, M. & Lewinska, A. (2020). A Non-Vector Approach to Increase Lipid Levels in the Microalga Planktochlorella nurekis. Molecules, 25(2), 270. DOI: 10.3390/molecules25020270.
]Otwórz DOISearch in Google Scholar
[
26. Tuller, G., Nemec, T., Hrastnik, C. & DauM, G. (1999). Lipid composition of subcellular membranes of an FY1679-derived haploid yeast wild-type strain grown on different carbon sources. Yeast, 15(14), 1555–1564. DOI: 10.1002/(SICI)1097-0061(199910)15:14<1555::AID-YEA479>3.0.CO;2-Z.
]Otwórz DOISearch in Google Scholar
[
27. Tyburczy, C., Mossoba, M.M. & Rader, J.I. (2013). Determination of trans fat in edible oils: Current official methods and overview of recent developments Functional Foods and Dietary Supplements. Anal. Bioanal. Chem., 405(17), 5759–5772. DOI: 10.1007/s00216-013-7005-z.
]Otwórz DOISearch in Google Scholar
[
28. Van Wychen, S., Ramirez, K. & Laurens, L.M.L. (2013). Determination of Total Lipids as Fatty Acid Methyl Esters (FAME) by in situ Transesterification. Contract, 303, 275–3000.
]Search in Google Scholar
[
29. Wilczynska, A. & Modrzewski, A.F. (2018). Chapter 15 – Fatty acids in human diet and their impact on cognitive and emotional functioning. The Role of Functional Food Security in Global Health., 261–270. DOI: 10.1016/B978-0-12-813148-0.00015-3.
]Otwórz DOISearch in Google Scholar
[
30. Yanty, N.A.M., Marikkar, J.M.N. & Abdulkarim, S.M. (2014). Determination of types of fat ingredient in some commercial biscuit formulations. Int. Food Res. J., 21(1), 277–282.
]Search in Google Scholar
[
31. Zhang, Z.S., Wang, S., Liu, H., Li, B.Z. & Che, L. (2020). Constituents and thermal properties of milk thistle seed oils extracted with three methods. LWT, 126, 109282. DOI: 10.1016/j.lwt.2020.109282.
]Otwórz DOISearch in Google Scholar