1. bookTom 26 (2022): Zeszyt 1 (June 2022)
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
2344-150X
Pierwsze wydanie
30 Jul 2013
Częstotliwość wydawania
2 razy w roku
Języki
Angielski
access type Otwarty dostęp

Biochemical Composition and Antioxidant Activity of Different Preparations from Microbial Waste of the Beer Industry

Data publikacji: 09 Jul 2022
Tom & Zeszyt: Tom 26 (2022) - Zeszyt 1 (June 2022)
Zakres stron: 139 - 146
Otrzymano: 08 Mar 2022
Przyjęty: 10 May 2022
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
2344-150X
Pierwsze wydanie
30 Jul 2013
Częstotliwość wydawania
2 razy w roku
Języki
Angielski
Abstract

The purpose of this research was to evaluate the biochemical composition and antioxidant activity of different natural preparations obtained from the yeast biomass of beer industry waste. It was found that the preparations had a valuable biochemical composition, high antioxidant activities, a broad spectrum of immunoactive and essential amino acids, and that their protein and carbohydrate contents varied depending on the extraction stage and solvent. In conclusion, the varied biochemical composition, significant antioxidant and enzymatic activities, the innocuousness of Saccharomyces yeasts for living organisms, suggest that the obtained preparations can be an excellent source of biologically active substances and that their high biological activity presents a considerable potential for animal husbandry, food industry and cosmetics.

Keywords

1. Araújo, V. B. S., Melo, A. N. F., Costa, A. G., Castro-Gomez, R. H., Madruga, M. S., Souza, E. L., Magnani M. (2014). Followed extraction of β-glucan and mannoprotein from spent brewer’s yeast (Saccharomyces uvarum) and application of the obtained mannoprotein as a stabilizer in mayonnaise. Innovative Food Science & Emerging Technologies, 23, 164-170. doi:10.1016/j.ifset.2013.12.013. Otwórz DOISearch in Google Scholar

2. Avramia, I., Amariei, S. (2021). Spent Brewer’s Yeast as a Source of Insoluble β-Glucans. Int. J. Mol. Sci., 22(2), 825. https://doi.org/10.3390/ijms22020825. Search in Google Scholar

3. Barczak, B., Nowak, K. (2008). Skład aminokwasowy białka biomasy jęczmienia ozimego (hordeum vulgare I.) w zależności od stadium rozwoju rośliny i nawożenia azotem. Acta Sci. Pol. Agricultura, 7, 3-15. Search in Google Scholar

4. Barriga, J. A. T., Cooper, D. G., Idziak, E. S., Cameron, D. R. (1999). Components of the emulsifier from Saccharomyces cerevisiae. Enzyme and Microbial Technology, 25(2), 96-102.10.1016/S0141-0229(99)00032-0 Search in Google Scholar

5. Beșliu, A., Chiselița, O., Chiselița, N., Efremova, N., Tofan, E., Lozan, A. (2020). Biochemical composition of the beer yeast sediments in different autolysis processes. Studia Universitatis Moldaviae, 6(136), 54-59. (in Romanian). Search in Google Scholar

6. Beșliu, A., Chiselița, O., Chiselița, N., Efremova, N., Tofan, E., Lozan, A. (2021). Process for extracting mannoproteins from brewer’s yeast sediments. Salonul Internaţional al Inovării şi Cercetării Ştiinţifice Studenţeşti “Cadet INOVA’21”, Academia Forţelor Terestre “Nicolae Bălcescu”, 15-17 april, 2021, Sibiu, România. Search in Google Scholar

7. Chirsanova, A., Boistean, A., Chiselița, N., Siminiuc, R. (2021). Impact of yeast sediment beta-glucans on the quality indices of yoghurt. Food Systems, 4(1), 12-18.10.21323/2618-9771-2021-4-1-12-18 Search in Google Scholar

8. Chiseliţa, O., Chiseliţa, N., Efremova, N., Beşliu, A., Tofan, E., Lozan, A., Daniliş, M. (2020). Biochemical composition of yeast biomass in beer industry waste. Buletinul AŞM. Ştiinţele vieţii, 3(342), 143-150. (in Romanian). Search in Google Scholar

9. Costa, A. G., Magnani, M., Castro-Gomez, R. J. H. (2012). Obtencao e caracterizacao de manoproteinas da parede celular de leveduras de descarte em cervejaria. Acta Scientiarum. Biological Sciences. Maringa, 34(1), 77-84.10.4025/actascibiolsci.v34i1.7124 Search in Google Scholar

10. De Iseppi, A., Curioni, A., Marangon, M., Vincenzi, S., Kantureeva, G., Lomolino, G. (2019). Characterization and emulsifying properties of extracts obtained by physical and enzymatic methods from an oenological yeast strain. J. Sci. Food Agric., 99, 5702-5710.10.1002/jsfa.983331149736 Search in Google Scholar

11. Dey, P., Harborn, J. (1993). Methods in Plant Biochemistry. Carbohydr. Academic Press, 2, 1993, 529. Search in Google Scholar

12. Dima, E. (2009). Research on the traceability of biologically active substances in beer biotechnology. Summary of the doctoral thesis. University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca (in Romanian). Search in Google Scholar

13. Egorov N.S. (1995). Guide to practical exercises in microbiology, М.: МГУ, 224. (in Russian). Search in Google Scholar

14. Fakruddin, M., Hossain, M.N., Ahmed, M.M. (2017). Antimicrobial and antioxidant activities of Saccharomyces cerevisiae IFST062013, a potential probiotic. BMC Complementary and Alternative Medicine, 17(1), 64, 11. doi:10.1186/s12906-017-1591-9.525130228109187 Otwórz DOISearch in Google Scholar

15. FAO/WHO. (1991). Protein quality evaluation. Report of the Joint FAO/WHO Expert Consultation. FAO Food and Nutrition Paper 51. Food and Agriculture Organization of the United Nations, Rome. Search in Google Scholar

16. Garaeva, S.N., Redkozubova, G.V., Postolati, G.V. (2009). Amino acids in living organisms. Academy of Sciences of Moldova. Institute of Physiology and Sanocreatology, 552 (in Russian). Search in Google Scholar

17. INRA. (2004). Tables of composition and nutritional value of feed materials, 2nd revised edition. Wageningen Academic Publishers, The Netherlands. Search in Google Scholar

18. Jaehrig, S. C., Rohn, S., Kroh, L.W., Wildenauer, F.X., Lisdatc, F., Fleischer, L.G., Kurz, T. (2008). Antioxidative activity of (1 → 3), (1 → 6)-!!!x1D6FD;-d-glucan from Saccharomyces cerevisiae grown on different media. LWT-Food Science and Technology, 41(5), 868-877. https://doi.org/10.1016/j.lwt.2007.06.004. Search in Google Scholar

19. Jaehrig, S.C., Rohn, S., Kroh, L.W., Fleischer, L.G., Kurz, T. (2007). In vitro potential antioxidant activity of (1 → 3), (1 → 6)-!!!x1D6FD;-d-glucan and protein fractions from Saccharomyces cerevisiae cell walls. Journal of Agricultural and Food Chemistry, 55(12), 4710-4716. https://doi:10.1021/jf063209q.10.1021/jf063209q17516653 Search in Google Scholar

20. Klindukhova Yu.O. (2009). Influence of hop processing products on the biotechnological properties of baker’s yeast. Technique and technology of food production, 1, 20-23 (in Russian). Search in Google Scholar

21. Komina, A. V., Korostileva, K. A., Gyrylova, S. N., Belonogov, R. N., Ruksha, T. G. (2012). Interaction Between Single Nucleotide Polymorphism in Catalase Gene and Catalase Activity Under the Conditions of Oxidative Stress. Physiol. Res., 61, 655-658.10.33549/physiolres.93233323098659 Search in Google Scholar

22. Kujumdzieva, A.V., Rasheva, V.T., Petrova, V.Y. (2002). Catalase enzyme in mitochondria of Saccharomyces cerevisiae. EJB Electronic Journal of Biotechnology, 5 (1), 29-41.10.2225/vol5-issue1-fulltext-6 Search in Google Scholar

23. Lavová, B., Urminská, D. (2013). Total antioxidant activity of yeast Saccharomyces cerevisiae. JMBFS, 2 (1), 1927-1933. Search in Google Scholar

24. Lavová, B., Urminská, D. (2014). Activity of superoxide dismutase enzyme in yeast Saccharomyces cerevisiae. J Microbiol Biotech Food Sci., 3 (1), 250-252. Search in Google Scholar

25. Liepins, J., Kovačova, E., Shvirksts, K., Grube, M., Rapoport, A., Kogan, G. (2015). Drying enhances immunoactivity of spent brewer’s yeast cell wall β-d-glucans. Journal of Biotechnology, 206, 12-16. https://doi:10.1016/j.jbiotec.2015.03.02410.1016/j.jbiotec.2015.03.024 Search in Google Scholar

26. Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem., 193, 265-275.10.1016/S0021-9258(19)52451-6 Search in Google Scholar

27. Mironescu M. (2011). Investigations on wastewaters at potato processing and starch recovery and characterisation, Journal of agroalimentary processes and technologies, 17 (2), 134-138 Search in Google Scholar

28. Nekrasova, G.F., Kiseleva, I.S. (2008). Guide to laboratory and practical classes. Ural State University, Ekaterinburg, 157. Search in Google Scholar

29. Petravic-Tominac, V., Zechner-Krpan, V., Berkovic, K., Galovic, P., Herceg, Z., Srecec, S., Špoljaric, I. (2011). Rheological properties, water-holding and oil-binding capacities of particulate β-glucans isolated from spent Brewer’s yeast by three different procedures. Food Technol. Biotechnol., 49, 56-64. Search in Google Scholar

30. Pinho, O. C., Vieira, E., Tavarela, J.G. (2010). Brewer’s Saccharomyces yeast biomass: characteristics and potential applications. Trends in Food Science & Technology, 21(2), 77-84.10.1016/j.tifs.2009.10.008 Search in Google Scholar

31. Podpora, B., Świderski, F., Sadowska, A., Rakowska, R., Wasiak-Zys, G. (2016). Spent Brewer’s Yeast Extracts as a New Component of Functional Food. Czech J. Food Sci., 34(6), 554-563. https://doi:10.17221/419/2015-CJFS.10.17221/419/2015-CJFS Search in Google Scholar

32. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology & Medicine, 26(9/10), 1231-1237.10.1016/S0891-5849(98)00315-3 Search in Google Scholar

33. Shahat, A. S. (2017). Antioxidant and Anticancer activities of yeast grown on commercial media. Int. J. Biol. Chem. Sci., 11(5), 2442-2455. https://dx.doi.org/10.4314/ijbcs.v11i5.39.10.4314/ijbcs.v11i5.39 Search in Google Scholar

34. Sokolenko, G.G., Lazarev, B.P., Minchenko, S.V. (2015). Probiotics in Rational Feeding of Animals Technologies of Food and Processing Industry. APK - healthy food products, 1(5), 73-78 (in Russian). Search in Google Scholar

35. Thammakiti, S., Suphantharika, M., Phaesuwan, T., Verduyn, C. (2004). Preparation of spent brewer’s yeast β-glucans for potential applications in the food industry. Int. J. Food Sci. Technol., 39, 21-29.10.1111/j.1365-2621.2004.00742.x Search in Google Scholar

36. Tofan, E., Chiselița, N., Chiselița, O., Beșliu, A., Efremova, N., Lozan, A., Daniliș, M. (2021). Optimization of the process for processing the waste of the beer industry and obtaining lipid preparations from yeast biomass. International Scientific Conference “Yesterday’s Heritage - Implications for the Development of Tomorrow’s Sustainable Society”,. 11-12 februarie, 2021, pp. 105. Chișinău, Republic of Moldova (in Romanian). Search in Google Scholar

37. Vieira, E.F., Carvalho, J., Pinto, E., Cunha, S., Almeida, A.A., Ferreira, I.M.P. (2016). Nutritive value, antioxidant activity and phenolic compounds profile of brewer’s spent yeast extract. Journal of Food Composition and Analysis, 52, 44-51. doi:10.1016/j.jfca.2016.07.006. Otwórz DOISearch in Google Scholar

38. Yamada, E.A., Sgarbieri, V.C. (2005). Yeast (Saccharomyces cerevisiae) Protein Concentrate: Preparation, Chemical Composition, and Nutritional and Functional Properties. J Agric Food Chem., 53, 3931-3936.10.1021/jf040082115884819 Search in Google Scholar

39. Ząbek, K., Milewski, S., Wójcik, R., Siwicki, K. A. (2014). The effects of supplementing diets fed to pregnant and lactating ewes with Saccharomyces cerevisiae dried yeast. Turk J Vet Anim. Sci., 38, 200-206.10.3906/vet-1305-68 Search in Google Scholar

Polecane artykuły z Trend MD

Zaplanuj zdalną konferencję ze Sciendo