1. bookTom 26 (2022): Zeszyt 1 (June 2022)
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
2344-150X
Pierwsze wydanie
30 Jul 2013
Częstotliwość wydawania
2 razy w roku
Języki
Angielski
access type Otwarty dostęp

Biotransformation of Hops-Derived Compounds in Beer – A Review

Data publikacji: 09 Jul 2022
Tom & Zeszyt: Tom 26 (2022) - Zeszyt 1 (June 2022)
Zakres stron: 1 - 18
Otrzymano: 23 May 2022
Przyjęty: 15 May 2022
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
2344-150X
Pierwsze wydanie
30 Jul 2013
Częstotliwość wydawania
2 razy w roku
Języki
Angielski
Abstract

Besides providing bitterness to beer, hops also impart a whole range of aromas, such as herbal, spice, floral, citrus, fruity and pine to this beverage. Although hops are usually added in relatively small amounts, they have a significant impact on the sensory characteristics of the product. Raw hop aroma significantly differs from the aroma resulting from its addition to the beer. The final aroma of the beer arises from substances in the malt, hops, other additives, and yeast metabolism. The biochemical transformation of hop compounds by yeast has become more and more popular in recent years. Knowledge of this process may allow more precise control over the final sensory characteristics of the beverage. The article describes the chemical composition of hops and discusses the influence of the hopping regime on the concentration of volatile compounds in the finished product. Moreover, the article describes the biotransformation of hop-derived compounds by traditionally used Saccharomyces cerevisiae yeast, as well as less commonly used non-Saccharomyces yeast. The paper outlines the current state of knowledge on biotransformation of hop-derived hydrocarbons, terpenoids, esters, sulfur compounds and glycosidically bound aroma precursors.

Keywords

1. Aberl, A., & Coelhan, M. (2012). Determination of Volatile Compounds in Different Hop Varieties by Headspace-Trap GC/MS- In Comparison with Conventional Hop Essential Oil Analysis. Journal of Agricultural and Food Chemistry, 60(11), 2785–2792. DOI: 10.1021/jf205002p22352993 Otwórz DOISearch in Google Scholar

2. Azzolini, M., Fedrizzi, B., Tosi, E., Finato, F., Vagnoli, P., Scrinzi, C., & Zapparoli, G. (2012). Effects of Torulaspora delbrueckii and Saccharomyces cerevisiae mixed cultures on fermentation and aroma of Amarone wine. European Food Research and Technology, 235(2), 303–313. DOI: 10.1007/s00217-012-1762-3 Otwórz DOISearch in Google Scholar

3. Bamforth, C. W. (2001). pH in brewing: an overview. Technical Quarterly-Master Brewers Association of the Americas, 38(1), 1–9. Search in Google Scholar

4. Belda, I., Conchillo, L. B., Ruiz, J., Navascués, E., Marquina, D., & Santos, A. (2016). Selection and use of pectinolytic yeasts for improving clarification and phenolic extraction in winemaking. International Journal of Food Microbiology, 223, 1–8. DOI: 10.1016/j.ijfoodmicro.2016.02.00326874860 Otwórz DOISearch in Google Scholar

5. Brendel, S., Hofmann, T., & Granvogl, M. (2020). Hop-induced formation of ethyl esters in dryhopped beer. Food Production, Processing and Nutrition, 2(1), 18. DOI: 10.1186/s43014-020-00030-0 Otwórz DOISearch in Google Scholar

6. Burdock, G. A. (2016). Fenaroli’s handbook of flavor ingredients. CRC press.10.1201/9781439847503 Search in Google Scholar

7. Carrau, F. M., Medina, K., Boido, E., Farina, L., Gaggero, C., Dellacassa, E., Versini, G., & Henschke, P. A. (2005). De novo synthesis of monoterpenes by Saccharomyces cerevisiae wine yeasts. FEMS Microbiology Letters, 243(1), 107–115. DOI: 10.1016/j.femsle.2004.11.05015668008 Otwórz DOISearch in Google Scholar

8. Chenot, C., Thibault de Chanvalon, E., Janssens, P., & Collin, S. (2021). Modulation of the Sulfanylalkyl Acetate/Alcohol Ratio and Free Thiol Release from Cysteinylated and/or Glutathionylated Sulfanylalkyl Alcohols in Beer under Different Fermentation Conditions. Journal of Agricultural and Food Chemistry, 69(21), 6005–6012. DOI: 10.1021/acs.jafc.1c0161034018730 Otwórz DOISearch in Google Scholar

9. Chevance, F., Guyot-Declerck, C., Dupont, J., & Collin, S. (2002). Investigation of the β-Damascenone Level in Fresh and Aged Commercial Beers. Journal of Agricultural and Food Chemistry, 50(13), 3818–3821. DOI: 10.1021/jf020085i12059165 Otwórz DOISearch in Google Scholar

10. Colicchio, T. (2012). The Oxford Companion to Beer. OUP USA. Search in Google Scholar

11. Copper, A. W., Collins, C., Bastian, S. E. P., Johnson, T. E., & Capone, D. L. (2021). Preliminary investigation of potent thiols in Cypriot wines made from indigenous grape varieties Xynisteri, Maratheftiko and Giannoudhi. OENO One, 55(1 SE-Short communications), 223–234. DOI: 10.20870/oeno-one.2021.55.1.4516 Otwórz DOISearch in Google Scholar

12. Daenen, L., Saison, D., Sterckx, F., Delvaux, F. R., Verachtert, H., & Derdelinckx, G. (2008). Screening and evaluation of the glucoside hydrolase activity in Saccharomyces and Brettanomyces brewing yeasts. Journal of Applied Microbiology, 104(2), 478–488. DOI: 10.1111/j.1365-2672.2007.03566.x17927762 Otwórz DOISearch in Google Scholar

13. Escribano, R., González-Arenzana, L., Garijo, P., Berlanas, C., López-Alfaro, I., López, R., Gutiérrez, A. R., & Santamaría, P. (2017). Screening of enzymatic activities within different enological non-Saccharomyces yeasts. Journal of Food Science and Technology, 54(6), 1555–1564. DOI: 10.1007/s13197-017-2587-7543018828559615 Otwórz DOISearch in Google Scholar

14. Esmaeili, A., & Hashemi, E. (2011). Biotransformation of myrcene by Pseudomonas aeruginosa. Chemistry Central Journal, 5(1), 1–7. DOI: 10.1186/1752-153X-5-26312781221609445 Otwórz DOISearch in Google Scholar

15. Ferreira, V., Peña, C., Escudero, A., & Cacho, J. (1996). Losses of volatile compounds during fermentation. Zeitschrift Für Lebensmittel-Untersuchung Und Forschung, 202(4), 318–323. DOI: 10.1007/BF01206104 Otwórz DOISearch in Google Scholar

16. Forster, A., Gahr, A., & Opstaele, F. (2014). On the transfer rate of geraniol with dry hopping. BrewingScience, 67, 60. Search in Google Scholar

17. Garavaglia, C., & Swinnen, J. (2017). The craft beer revolution: An international perspective. Choices, 32(3), 1–8. Search in Google Scholar

18. Guan, X., Nie, C., Guo, Y., & Zhang, J. (2019). Changes of Hop-Derived Aroma Compounds in India Pale Ale during Brewing and Storage. ETP International Journal of Food Engineering, 50–57. DOI: 10.18178/ijfe.5.1.50-57 Otwórz DOISearch in Google Scholar

19. Hashem, M., Alamri, S. A., Al-Zomyh, S. S. A. A., & Alrumman, S. A. (2018). Biodegradation and detoxification of aliphatic and aromatic hydrocarbons by new yeast strains. Ecotoxicology and Environmental Safety, 151, 28–34. DOI: 10.1016/j.ecoenv.2017.12.06429304415 Otwórz DOISearch in Google Scholar

20. Haslbeck, K., Bub, S., Schönberger, C., Zarnkow, M., Jacob, F., & Coelhan, M. (2017). On the fate of β-myrcene during fermentation–The role of stripping and uptake of hop oil components by brewers yeast in dry-hopped wort and beer. Brew Sci, 70(11–12), 159–169. Search in Google Scholar

21. Haslbeck, K., Bub, S., von Kamp, K., Michel, M., Zarnkow, M., Hutzler, M., & Coelhan, M. (2018). The influence of brewing yeast strains on monoterpene alcohols and esters contributing to the citrus flavour of beer. Journal of the Institute of Brewing, 124(4), 403–415. DOI: 10.1002/jib.523 Otwórz DOISearch in Google Scholar

22. Hauser, D. G., Lafontaine, S. R., & Shellhammer, T. H. (2019). Extraction efficiency of dry-hopping. Journal of the American Society of Brewing Chemists, 77(3), 188–198. DOI: 10.1080/03610470.2019.1617622 Otwórz DOISearch in Google Scholar

23. Holt, S., Miks, M. H., de Carvalho, B. T., Foulquie-Moreno, M. R., & Thevelein, J. M. (2019). The molecular biology of fruity and floral aromas in beer and other alcoholic beverages. FEMS Microbiology Reviews, 43(3), 193–222. DOI: 10.1093/femsre/fuy041652468230445501 Otwórz DOISearch in Google Scholar

24. Inui, T., Tsuchiya, F., Ishimaru, M., Oka, K. & Komura, H. (2013). Different beers with different hops. Relevant compounds for their aroma characteristics. Journal of Agricultural and Food Chemistry 61(20), 4758-4764. DOI: 10.1021/jf305373723627300 Otwórz DOISearch in Google Scholar

25. Janish, S. (2021). Dry hop best practices: using science as a guide for process and recipe development. MBAA Tech Q, 58, 59–65. DOI: 10.1094/TQ-58-1-0402-01 Otwórz DOISearch in Google Scholar

26. Kemp, O., Hofmann, S., Braumann, I., Jensen, S., Fenton, A., & Oladokun, O. (2021). Changes in key hop-derived compounds and their impact on perceived dry-hop flavour in beers after storage at cold and ambient temperature. Journal of the Institute of Brewing, 127(4), 367–384. DOI: 10.1002/jib.667 Otwórz DOISearch in Google Scholar

27. King, A. J., & Dickinson, J. R. (2003). Biotransformation of hop aroma terpenoids by ale and lager yeasts. FEMS Yeast Research, 3(1), 53–62. DOI: 10.1111/j.1567-1364.2003.tb00138.x Otwórz DOISearch in Google Scholar

28. King, A., & Dickinson, J. R. (2000). Biotransformation of monoterpene alcohols by Saccharomyces cerevisiae, Torulaspora delbrueckii and Kluyveromyces lactis. Yeast, 16(6), 499–506. DOI: 10.1002/(SICI)1097-0061(200004)16:6<499::AID-YEA548>3.0.CO;2-E Otwórz DOISearch in Google Scholar

29. Kishimoto, T. (2008). Behaviors of 3-Mercaptohexan-1-ol and 3-Mercaptohexyl Acetate During Brewing Processes. Journal of The American Society of Brewing Chemists - ASBC, 66, 192–196. DOI: 10.1094/ASBCJ-2008-0702-01 Otwórz DOISearch in Google Scholar

30. Kishimoto, T., Wanikawa, A., Kono, K. & Shibata, K. (2006). Comparison of the odor-active compounds in unhopped beer and beers hopped with different hop varieties. Journal of Agricultural and Food Chemistry 54(23), 8855-8861. DOI: 10.1021/jf061342c Otwórz DOISearch in Google Scholar

31. Kiyoshi, F., Nagi, Y., Yoshifumi, K., Toshiyasu, Y., Yoshinori, W., Katsuhiko, K., Yoshiharu, I., & Akira, K. (1998). Balance of Activities of Alcohol Acetyltransferase and Esterase in Saccharomyces cerevisiae Is Important for Production of Isoamyl Acetate. Applied and Environmental Microbiology, 64(10), 4076–4078. DOI: 10.1128/AEM.64.10.4076-4078.1998 Otwórz DOISearch in Google Scholar

32. Kovačevič, M. & Kač, M. (2002). Determination and verification of hop varieties by analysis of essential oils. Food Chemistry 77(4), 489-494. DOI: 10.1016/S0308-8146(02)00114-0 Otwórz DOISearch in Google Scholar

33. Krogerus, K., Eerikäinen, R., Aisala, H., & Gibson, B. (2022). Repurposing brewery contaminant yeast as production strains for low-alcohol beer fermentation. Yeast, 39(1–2), 156–169. DOI: 10.1002/yea.3674 Otwórz DOISearch in Google Scholar

34. Lafontaine, S., Caffrey, A., Dailey, J., Varnum, S., Hale, A., Eichler, B., Dennenlöhr, J., Schubert, C., Knoke, L., Lerno, L., Dagan, L., Schönberger, C., Rettberg, N., Heymann, H., & Ebeler, S. E. (2021). Evaluation of Variety, Maturity, and Farm on the Concentrations of Monoterpene Diglycosides and Hop Volatile/Nonvolatile Composition in Five Humulus lupulus Cultivars. Journal of Agricultural and Food Chemistry, 69(15), 4356–4370. DOI: 10.1021/acs.jafc.0c07146 Otwórz DOISearch in Google Scholar

35. Lafontaine, S. R., & Shellhammer, T. H. (2018). Impact of static dry-hopping rate on the sensory and analytical profiles of beer. Journal of the Institute of Brewing, 124(4), 434–442. DOI: 10.1002/jib.517 Otwórz DOISearch in Google Scholar

36. Langos, D., Granvogl, M. & Schieberle, P. (2013). Characterization of the key aroma compounds in two bavarian wheat beers by means of the sensomics approach. Journal of Agricultural and Food Chemistry 61(47), 11303-11311. DOI: 10.1021/jf403912j Otwórz DOISearch in Google Scholar

37. López, M. C., Mateo, J. J., & Maicas, S. (2015). Screening of β-Glucosidase and β-Xylosidase Activities in Four Non-Saccharomyces Yeast Isolates. Journal of Food Science, 80(8), C1696–C1704. DOI: 10.1111/1750-3841.12954 Otwórz DOISearch in Google Scholar

38. Mafata, M., Stander, M. A., Thomachot, B., & Buica, A. (2018). Measuring Thiols in Single Cultivar South African Red Wines Using 4,4-Dithiodipyridine (DTDP) Derivatization and Ultraperformance Convergence Chromatography-Tandem Mass Spectrometry. In Foods (Vol. 7, Issue 9). DOI: 10.3390/foods7090138 Otwórz DOISearch in Google Scholar

39. Manzanares, P., Ramón, D., & Querol, A. (1999). Screening of non-Saccharomyces wine yeasts for the production of β-D-xylosidase activity. International Journal of Food Microbiology, 46(2), 105–112. DOI: 10.1016/s0168-1605(98)00186-x Otwórz DOISearch in Google Scholar

40. Maturano, Y. P., Assaf, L. A. R., Toro, M. E., Nally, M. C., Vallejo, M., de Figueroa, L. I. C., Combina, M., & Vazquez, F. (2012). Multi-enzyme production by pure and mixed cultures of Saccharomyces and non-Saccharomyces yeasts during wine fermentation. International Journal of Food Microbiology, 155(1–2), 43–50. DOI: 10.1016/j.ijfoodmicro.2012.01.01522326141 Otwórz DOISearch in Google Scholar

41. Meng, Q., Imamura, M., Katayama, H., Obata, A., & Sugawara, E. (2017). Key compounds contributing to the fruity aroma characterization in Japanese raw soy sauce. Bioscience, Biotechnology, and Biochemistry, 81(10), 1984–1989. DOI: 10.1080/09168451.2017.136462028868973 Otwórz DOISearch in Google Scholar

42. Menoncin, M., & Bonatto, D. (2019). Molecular and biochemical aspects of Brettanomyces in brewing. Journal of the Institute of Brewing, 125(4), 402–411. DOI: 10.1002/jib.580 Otwórz DOISearch in Google Scholar

43. Michel, M., Haslbeck, K., Ampenberger, F., Meier-Dörnberg, T., Stretz, D., Hutzler, M., Coelhan, M., Jacob, F., & Liu, Y. (2019). Screening of brewing yeast β-lyase activity and release of hop volatile thiols from precursors during fermentation. BrewingScience, 72, 179–186. DOI: 10.23763/BrSc19-26michel Otwórz DOISearch in Google Scholar

44. Moir, M. (2000). Hops—a millennium review. Journal of the American Society of Brewing Chemists, 58(4), 131–146. DOI: 10.1094/ASBCJ-58-0131 Otwórz DOISearch in Google Scholar

45. Nickerson, G. B., & Van Engel, E. L. (1992). Hop aroma component profile and the aroma unit. Journal of the American Society of Brewing Chemists, 50(3), 77–81. DOI: 10.1094/ASBCJ-50-0077 Otwórz DOISearch in Google Scholar

46. Nizet, S., Gros, J., Peeters, F., Chaumont, S., Robiette, R., & Collin, S. (2013). First Evidence of the Production of Odorant Polyfunctional Thiols by Bottle Refermentation. Journal of the American Society of Brewing Chemists, 71(1), 15–22. DOI: 10.1094/ASBCJ-2013-0117-01 Otwórz DOISearch in Google Scholar

47. Nizet, S., Peeters, F., Gros, J., & Collin, S. (2014). Chapter 43 - Odorant Polyfunctional Thiols Issued from Bottle Beer Refermentation (V. Ferreira & R. B. T.-F. S. Lopez (eds.); pp. 227–230). Academic Press. DOI: 10.1016/B978-0-12-398549-1.00043-X Otwórz DOISearch in Google Scholar

48. Ohashi, Y., Huang, S., & Maeda, I. (2021). Biosyntheses of geranic acid and citronellic acid from monoterpene alcohols by Saccharomyces cerevisiae. Bioscience, Biotechnology, and Biochemistry, 85(6), 1530–1535. DOI: 10.1093/bbb/zbab03933713103 Otwórz DOISearch in Google Scholar

49. Oladokun, O., James, S., Cowley, T., Smart, K., Hort, J., & Cook, D. (2017). Dry-hopping: The effects of temperature and hop variety on the bittering profiles and properties of resultant beers. Brew. Sci, 70, 187–196. DOI: 10.23763/BRSC17-18OLADOKU Otwórz DOISearch in Google Scholar

50. Pando Bedrinana, R., Lastra Queipo, A., & Suarez Valles, B. (2012). Screening of enzymatic activities in non-Saccharomyces cider yeasts. Journal of Food Biochemistry, 36(6), 683–689. DOI: 10.1111/j.1745-4514.2011.00583.x Otwórz DOISearch in Google Scholar

51. Peltz, M., & Shellhammer, T. (2017). Ethanol content has little effect on the sensory orthonasal detection threshold of hop compounds in beer. Journal of the American Society of Brewing Chemists, 75(3), 221–227. DOI: 10.1094/ASBCJ-2017-3994-01 Otwórz DOISearch in Google Scholar

52. Pires, E. J., Teixeira, J. A., Brányik, T., & Vicente, A. A. (2014). Yeast: the soul of beer’s aroma—a review of flavour-active esters and higher alcohols produced by the brewing yeast. Applied Microbiology and Biotechnology, 98(5), 1937–1949. DOI: 10.1007/s00253-013-5470-024384752 Otwórz DOISearch in Google Scholar

53. Piškur, J. & Compagno, C. (2014). Molecular Mechanisms in Yeast Carbon Metabolism. Berlin: Springer, Heidelberg. Search in Google Scholar

54. Podeszwa, T., & Harasym, J. (2016). New methods of hopping (dryhopping) and their impact on sensory properties of beer. Acta Innovations, 21, 81–88. Search in Google Scholar

55. Porter, T. J., Divol, B., & Setati, M. E. (2019). Investigating the biochemical and fermentation attributes of Lachancea species and strains: Deciphering the potential contribution to wine chemical composition. International Journal of Food Microbiology, 290, 273–287. DOI: 10.1016/j.ijfoodmicro.2018.10.02530412799 Otwórz DOISearch in Google Scholar

56. Praet, T., Van Opstaele, F., Jaskula-Goiris, B., Aerts, G., & De Cooman, L. (2012). Biotransformations of hop-derived aroma compounds by Saccharomyces cerevisiae upon fermentation. Cerevisia, 36(4), 125–132. DOI: 10.1016/j.cervis.2011.12.005 Otwórz DOISearch in Google Scholar

57. Preedy, V. R. (2011). Beer in health and disease prevention. Academic Press. Search in Google Scholar

58. Rettberg, N., Biendl, M., & Garbe, L.-A. (2018). Hop aroma and hoppy beer flavor: chemical backgrounds and analytical tools—a review. Journal of the American Society of Brewing Chemists, 76(1), 1–20. DOI: 10.1080/03610470.2017.1402574 Otwórz DOISearch in Google Scholar

59. Rodríguez, M. E., Lopes, C., Valles, S., Giraudo, M. R., & Caballero, A. (2007). Selection and preliminary characterization of β-glycosidases producer Patagonian wild yeasts. Enzyme and Microbial Technology, 41(6), 812–820. DOI: 10.1016/j.enzmictec.2007.07.004 Otwórz DOISearch in Google Scholar

60. Roland, A., Viel, C., Reillon, F., Delpech, S., Boivin, P., Schneider, R., & Dagan, L. (2016). First identification and quantification of glutathionylated and cysteinylated precursors of 3-mercaptohexan-1-ol and 4-methyl-4-mercaptopentan-2-one in hops (Humulus lupulus). Flavour and Fragrance Journal, 31(6), 455–463. DOI: 10.1002/ffj.3337 Otwórz DOISearch in Google Scholar

61. Rutnik, K., Knez Hrnčič, M., & Jože Košir, I. (2021). Hop Essential Oil: Chemical Composition, Extraction, Analysis, and Applications. Food Reviews International, 1–23. DOI: 10.1080/87559129.2021.1874413 Otwórz DOISearch in Google Scholar

62. Saerens, S. M. G., Delvaux, F. R., Verstrepen, K. J., & Thevelein, J. M. (2010). Production and biological function of volatile esters in Saccharomyces cerevisiae. Microbial Biotechnology, 3(2), 165–177. DOI: 10.1111/j.1751-7915.2009.00106.x383658321255318 Otwórz DOISearch in Google Scholar

63. Sales, A., Felipe, L. de O., & Bicas, J. L. (2020). Production, properties, and applications of α-terpineol. Food and Bioprocess Technology, 13(8), 1261–1279.10.1007/s11947-020-02461-6 Search in Google Scholar

64. Sanekata, A., Tanigawa, A., Takoi, K., Nakayama, Y., & Tsuchiya, Y. (2018). Identification and characterization of geranic acid as a unique flavor compound of hops (Humulus lupulus L.) variety Sorachi Ace. Journal of Agricultural and Food Chemistry, 66(46), 12285–12295. DOI: 10.1021/acs.jafc.8b0439530362744 Otwórz DOISearch in Google Scholar

65. Satyanarayana, T., & Kunze, G. (2009). Yeast biotechnology: diversity and applications (Vol. 78). Springer.10.1007/978-1-4020-8292-4 Search in Google Scholar

66. Scariot, F. J., Pansera, M. S., Longaray Delamare, A. P., & Echeverrigaray, S. (2021). Antifungal activity of monoterpenes against the model yeast Saccharomyces cerevisiae. Journal of Food Processing and Preservation, 45(5), e15433. DOI: 10.1111/jfpp.15433 Otwórz DOISearch in Google Scholar

67. Schubert, C., Thörner, S., Knoke, L., & Rettberg, N. (2021). Development and Validation of a HSSPME-GC-SIM-MS Multi-Method Targeting Hop-Derived Esters in Beer. Journal of the American Society of Brewing Chemists, 1–11. DOI: 10.1080/03610470.2021.1994814 Otwórz DOISearch in Google Scholar

68. Schwab, W., Schaart, J. G. & Rosati, C. (2009). Molecular Biology Research in Fragaria. Genetics and Genomics of Rosaceae. Springer, New York, NY, USA.10.1007/978-0-387-77491-6_22 Search in Google Scholar

69. Serra Colomer, M., Funch, B., Solodovnikova, N., Hobley, T. J., & Förster, J. (2020). Biotransformation of hop derived compounds by Brettanomyces yeast strains. Journal of the Institute of Brewing, 126(3), 280–288. DOI: 10.1002/jib.610 Otwórz DOISearch in Google Scholar

70. Sharp, D. C., Steensels, J., & Shellhammer, T. H. (2017). The effect of hopping regime, cultivar and β-glucosidase activity on monoterpene alcohol concentrations in wort and beer. Journal of the Institute of Brewing, 123(2), 185–191. DOI: 10.1002/jib.418 Otwórz DOISearch in Google Scholar

71. Sharpe, F. R., & Laws, D. R. J. (1981). The essential oil of hops a review. Journal of the Institute of Brewing, 87(2), 96–107. DOI: 10.1002/j.2050-0416.1981.tb03996.x Otwórz DOISearch in Google Scholar

72. Steinhaus, M. & Schieberle, P. (2000). Comparison of the most odor-active compounds in fresh and dried hop cones (Humulus lupulus L. Variety Spalter Select) based on GC−olfactometry and odor dilution techniques. Journal of Agricultural and Food Chemistry 48(5), 1776-1783. DOI: 10.1021/jf990514l10820094 Otwórz DOISearch in Google Scholar

73. Steinhaus, M., Wilhelm, W., & Schieberle, P. (2007). Comparison of the most odour-active volatiles in different hop varieties by application of a comparative aroma extract dilution analysis. European Food Research and Technology, 226(1), 45–55. DOI: 10.1007/s00217-006-0507-6 Otwórz DOISearch in Google Scholar

74. Steyer, D., Erny, C., Claudel, P., Riveill, G., Karst, F., & Legras, J.-L. (2013). Genetic analysis of geraniol metabolism during fermentation. Food Microbiology, 33(2), 228–234. DOI: 10.1016/j.fm.2012.09.02123200656 Otwórz DOISearch in Google Scholar

75. Takoi, K, Itoga, Y., Koie, K., Takayanagi, J., Kaneko, T., Watanabe, T., Matsumoto, I., & Nomura, M. (2017). Systematic analysis of behaviour of hop-derived monoterpene alcohols during fermentation and new classification of geraniol-rich flavour hops. BrewingScience, 70, 177–186. Search in Google Scholar

76. Takoi, K. (2016). Varietal Difference of Hop-Derived Flavour Compounds in Dry-Hopped Beers. Brauwelt International, 34, 244–249. Search in Google Scholar

77. Takoi, K. (2019). Behaviour of hop-derived branched-chain fatty acids during fermentation and their sensory effect on hopped beer flavours. BrewingScience, 72, 196–206. DOI: 10.23763/BrSc19-24takoi Otwórz DOISearch in Google Scholar

78. Takoi, K., Itoga, Y., Koie, K., Kosugi, T., Shimase, M., Katayama, Y., Nakayama, Y., & Watari, J. (2010). The Contribution of Geraniol Metabolism to the Citrus Flavour of Beer: Synergy of Geraniol and β-Citronellol Under Coexistence with Excess Linalool. Journal of the Institute of Brewing, 116(3), 251–260. DOI: 10.1002/j.2050-0416.2010.tb00428.x Otwórz DOISearch in Google Scholar

79. The Brewers of Europe. (2019). European beer trends. Statistic Report. Search in Google Scholar

80. Thompson, M. L., Marriott, R., Dowle, A., & Grogan, G. (2010). Biotransformation of β-myrcene to geraniol by a strain of Rhodococcus erythropolis isolated by selective enrichment from hop plants. Applied Microbiology and Biotechnology, 85(3), 721–730. DOI: 10.1007/s00253-009-2182-619707757 Otwórz DOISearch in Google Scholar

81. Toh, D. W. K., Chua, J. Y., Lu, Y., & Liu, S. Q. (2020). Evaluation of the potential of commercial non-Saccharomyces yeast strains of Torulaspora delbrueckii and Lachancea thermotolerans in beer fermentation. International Journal of Food Science & Technology, 55(5), 2049–2059. DOI: 10.1111/ijfs.14399 Otwórz DOISearch in Google Scholar

82. Van Opstaele, F., De Rouck, G., Janssens, P., & Montandon, G. (2020). An exploratory study on the impact of the yeast strain on hop flavour expressions in heavily hopped beers: New England IPA. Brew. Sci, 73, 26–40. DOI: 10.23763/BRSC20-04OPSTAELE Otwórz DOISearch in Google Scholar

83. Verstrepen, K. J., Derdelinckx, G., Dufour, J., Winderickx, J., Thevelein, J. M., Pretorius, I. S. & Delvaux, F. R. (2003). Flavor-active esters: adding fruitiness to beer. Journal of Bioscience and Bioengineering 96(2), 110-118. DOI: 10.1016/S1389-1723(03)90112-5 Otwórz DOISearch in Google Scholar

84. Wei, J., Zhang, Y., Wang, Y., Ju, H., Niu, C., Song, Z., Yuan, Y., & Yue, T. (2020). Assessment of chemical composition and sensorial properties of ciders fermented with different non-Saccharomyces yeasts in pure and mixed fermentations. International Journal of Food Microbiology, 318, 108471. DOI: 10.1016/j.ijfoodmicro.2019.10847131841786 Otwórz DOISearch in Google Scholar

85. WHO (2019). Global status report on alcohol and health 2018. World Health Organization. Search in Google Scholar

86. Yanai, T., & Sato, M. (2000). Purification and Characterization of an α-L-Rhamnosidase from Pichia angusta X349. Bioscience, Biotechnology, and Biochemistry, 64(10), 2179–2185. DOI: 10.1271/bbb.64.217911129592 Otwórz DOISearch in Google Scholar

87. Zdaniewicz, M., Satora, P., Pater, A., & Bogacz, S. (2020). Low Lactic Acid-Producing Strain of Lachancea thermotolerans as a New Starter for Beer Production. In Biomolecules (Vol. 10, Issue 2). DOI: 10.3390/biom10020256707238832046171 Otwórz DOISearch in Google Scholar

88. Zhang, W., Zhuo, X., Hu, L., & Zhang, X. (2020). Effects of Crude β-Glucosidases from Issatchenkia terricola, Pichia kudriavzevii, Metschnikowia pulcherrima on the Flavor Complexity and Characteristics of Wines. In Microorganisms (Vol. 8, Issue 6). DOI: 10.3390/microorganisms8060953735547232599830 Otwórz DOISearch in Google Scholar

89. Zietsman, A. J. J., de Klerk, D., & van Rensburg, P. (2011). Coexpression of α-l-arabinofuranosidase and β-glucosidase in Saccharomyces cerevisiae. FEMS Yeast Research, 11(1), 88–103. DOI: 10.1111/j.1567-1364.2010.00694.x21062416 Otwórz DOISearch in Google Scholar

90. Zott, K., Thibon, C., Bely, M., Lonvaud-Funel, A., Dubourdieu, D., & Masneuf-Pomarede, I. (2011). The grape must non-Saccharomyces microbial community: impact on volatile thiol release. International Journal of Food Microbiology, 151(2), 210–215. DOI: 10.1016/j.ijfoodmicro.2011.08.02621974981 Otwórz DOISearch in Google Scholar

Polecane artykuły z Trend MD

Zaplanuj zdalną konferencję ze Sciendo