Otwarty dostęp

Phytochemical and Bioactive Properties of Phelypaea Tournefortii – Effect of Parasitic Lifestyle and Environmental Factors


Zacytuj

1. Amigoni, L., Stuknytė, M., Ciaramelli, C., Magoni, C., Bruni, I., De Noni, I., Airoldi, C., Regonesi, M. E. & Palmioli, A. (2017). Green coffee extract enhances oxidative stress resistance and delays aging in Caenorhabditis elegans. J. Funct. Foods, 33, 297–306. doi: 10.1016/j.jff.2017.03.056.10.1016/j.jff.2017.03.056Search in Google Scholar

2. Arnao, M. B., Cano, A. & Acosta, M. (2001). The hydrophilic and lipophilic contribution to total antioxidant activity. Food Chem., 73, 239–244. doi: 10.1016/S0308-8146(00)00324-1.10.1016/S0308-8146(00)00324-1Search in Google Scholar

3. Benvenuti, S., Bortolotti, E. & Maggini, R. (2016). Antioxidant power, anthocyanin content and organoleptic performance of edible flowers. Sci. Hortic., 199, 170–177. doi: 10.1016/j.scienta.2015.12.052.10.1016/j.scienta.2015.12.052Search in Google Scholar

4. Chełpiński, P., Ochmian, I., & Forczmański, P. (2019). Sweet Cherry Skin Colour Measurement as an Non-Destructive Indicator of Fruit Maturity. Acta Univ. Cibiniensis, Ser. E: Food Technol., 23(2), 157–166. doi: 10.2478/aucft-2019-0019.10.2478/aucft-2019-0019Search in Google Scholar

5. Chen, B. L., Wang, Y. J., Guo, H. & Zeng, G. Y. (2016). Design, synthesis, and biological evaluation of crenatoside analogues as novel influenza neuraminidase inhibitors. Eur. J. Med. Chem., 109, 199–205. doi: 10.1016/j.ejmech.2015.12.031.10.1016/j.ejmech.2015.12.03126774928Search in Google Scholar

6. Dawidowicz, A. L. & Typek, R. (2010). Thermal stability of 5-o-caffeoylquinic acid in aqueous solutions at different heating conditions. J. Agric. Food. Chem., 58(24), 12578–12584. doi: 10.1021/jf103373t.10.1021/jf103373t21087030Search in Google Scholar

7. Debouba, M., Balti, R., Hwiwi, S. & Zouari, S. (2012). Antioxidant capacity and total phenols richness of Cistanche violacea hosting Zygophyllum album. International Journal of Phytomedicine, 4, 399–402.Search in Google Scholar

8. Deng, M., Zhao, J. Y., Tu, P. F., Jiang, Y., Li, Z. B. & Wang, Y. H. (2004). Echinacoside rescues the SHSY5Y neuronal cells from TNFα-induced apoptosis. Eur. J. Pharmacol., 505(1–3), 11–18. doi: 10.1016/j.ejphar.2004.09.059.10.1016/j.ejphar.2004.09.05915556132Search in Google Scholar

9. Gatto, M. A., Ippolito, A., Linsalata, V., Cascarano, N. A., Nigro, F., Vanadia, S. & Di Venere, D. (2011). Activity of extracts from wild edible herbs against postharvest fungal diseases of fruit and vegetables. Postharvest Biol. Tec., 61(1), 72–82. doi: 10.1016/j.postharvbio.2011.02.005.10.1016/j.postharvbio.2011.02.005Search in Google Scholar

10. Han, J., Ye, M., Guo, H., Yang, M., Wang, B. R. & Guo, D. A. (2007). Analysis of multiple constituents in a Chinese herbal preparation Shuang-Huang-Lian oral liquid by HPLC-DAD-ESI-MSn. J. Pharm. Biomed. Sci., 44(2), 430–438. doi: 10.1016/j.jpba.2007.02.023.10.1016/j.jpba.2007.02.02317391890Search in Google Scholar

11. Iwashina, T. (2010). Flavonoids from two parasitic and achlorophyllous plants, Aeginetia indica and Orobanche minor (Orobanchaceae). Bull. Natl. Mus. Nat. Sci. Ser. B Bot., 36, 127–132.Search in Google Scholar

12. Jedrejek, D., Pawelec, S., Piwowarczyk, R., Pecio, Ł. & Stochmal, A. (2020). Identification and occurrence of phenylethanoid and iridoid glycosides in six Polish broomrapes (Orobanche spp. and Phelipanche spp., Orobanchaceae). Phytochemistry, 170, 112189. doi: 10.1016/j.phytochem.2019.112189.10.1016/j.phytochem.2019.11218931731241Search in Google Scholar

13. Kapusta, I., Cebulak, T. & Oszmiański, J. (2017). The anthocyanins profile of red grape cultivars growing in south-east Poland (Subcarpathia region). J. Food Meas. Charact., 11(4), 1863–1873. doi: 10.1007/s11694-017-9568-4.10.1007/s11694-017-9568-4Search in Google Scholar

14. Karioti, A., Protopappa, A., Megoulas, N. & Skaltsa, H. (2007). Identification of tyrosinase inhibitors from Marrubium velutinum and Marrubium cylleneum. Bioorg. Med. Chem., 15(7), 2708–2714. doi: 10.1016/j.bmc.2007.01.035.10.1016/j.bmc.2007.01.03517287127Search in Google Scholar

15. Khoo, H. E., Azlan, A., Tang, S. T. & Lim, S. M. (2017). Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr. Res., 61(1), 1361779. doi: 10.1080/16546628.2017.1361779.10.1080/16546628.2017.1361779561390228970777Search in Google Scholar

16. Lachowicz, S. & Oszmiański, J. (2019). Profile of Bioactive Compounds in the Morphological Parts of Wild Fallopia japonica (Houtt) and Fallopia sachalinensis (F. Schmidt) and Their Antioxidative Activity. Molecules, 24(7), 1436. doi: 10.3390/molecules24071436.10.3390/molecules24071436647973930979044Search in Google Scholar

17. Liu, J., Yang, L., Dong, Y., Zhang, B. & Ma, X. (2018). Echinacoside, an inestimable natural product in treatment of neurological and other disorders. Molecules, 23, 1213. doi: 10.3390/molecules23051213.10.3390/molecules23051213610006029783690Search in Google Scholar

18. Liu, Y., Ren, D., Pike, S., Pallardy, S., Gassmann, W. & Zhang, S. (2007). Chloroplast-generated reactive oxygen species are involved in hypersensitive response-like cell death mediated by a mitogen-activated protein kinase cascade. Plant J., 51, 941–954. doi: 10.1111/j.1365-313X.2007.03191.x.10.1111/j.1365-313X.2007.03191.x17651371Search in Google Scholar

19. Mahdavi, M., Jouri, M. H., Mahzooni-Kachapi, S. & Halimi’Jelodar, S. (2015). Study of chemical composition and antibacterial effects of essential oils of Stachys lavandulifolia Vahl., Salvia verticillata L., and Tanacetum polycephalum Schultz-Bip. on some microbial lineages. International Journal of Farming and Allied Sciences, 4(3), 197–206.Search in Google Scholar

20. Malekpoor, F., Pirbalouti, A. G., Salimi, A., Shabani, L., Sharifi, M. & Hamedi, B. (2015). Antimicrobial and antioxidant activities and total phenolic content of Tanacetum polycephalum Schutz. Bip. as a folkloric herb in South western Iran. Indian J. Tradit. Know., 14, 370–375.Search in Google Scholar

21. Mijowska, K., Ochmian, I. & Oszmiański, J. (2016). Impact of cluster zone leaf removal on grapes cv. Regent polyphenol content by the UPLC-PDA/MS method. Molecules, 21(12). doi: 10.3390/molecules21121688.10.3390/molecules21121688627422627973426Search in Google Scholar

22. Mittermeier, R. A., Gil, R. P., Hoffman, M., Pilgrim, J., Brooks, T., Mittermeier, C. G., Lamoreux, J. & Fonseca, G. A. B. (2005). Hotspots revisited: Earth’s biologically richest and most endangered terrestrial ecoregions. Boston: University of Chicago Press.Search in Google Scholar

23. Nenadis, N. & Tsimidou, M. (2002). Observations on the estimation of scavenging activity of phenolic compounds using rapid 1,1-diphenyl-2-picrylhydrazyl (DPPH•) tests. J. Amer. Oil Chem. Soc., 79, 1191–1195. doi: 10.1007/s11746-002-0626-z10.1007/s11746-002-0626-zSearch in Google Scholar

24. Nickavar, B. & Yousefian, N. (2011). Evaluation of α-amylase inhibitory activities of selected antidiabetic medicinal plants. J. Verbrauch. Lebensm., 6(2), 191–195. doi: 10.1007/s00003-010-0627-6.10.1007/s00003-010-0627-6Search in Google Scholar

25. Nickrent, D. L. (2020). Parasitic angiosperms: How often and how many? Taxon, 61(1), 5–27. doi: 10.1002/tax.12195.10.1002/tax.12195Search in Google Scholar

26. Ochmian, I., Angelov, L., Chełpiński, P., Stalev, B., Rozwarski, R. & Dobrowolska, A. (2013). The characteristics of fruits morphology, chemical composition and colour changes in must during maceration of three grapevine cultivars. J. Hort. Res., 21(1), 71–78. doi: 10.2478/johr-2013-0010.10.2478/johr-2013-0010Search in Google Scholar

27. Ochmian, I., Oszmiański, J., Lachowicz, S. & Krupa-Małkiewicz, M. (2019). Rootstock effect on physico-chemical properties and content of bioactive compounds of four cultivars Cornelian cherry fruits. Sci. Hortic., 256, 108588. doi: 10.1016/j.scienta.2019.108588.10.1016/j.scienta.2019.108588Search in Google Scholar

28. Oszmiański, J., Lachowicz, S., Gławdel, E., Cebulak, T. & Ochmian, I. (2018). Determination of phytochemical composition and antioxidant capacity of 22 old apple cultivars grown in Poland. Eur. Food Res. Technol., 244(4), 647–662. doi: 10.1007/s00217-017-2989-9.10.1007/s00217-017-2989-9Search in Google Scholar

29. Peng, F., Chen, J., Wang, X., Xu, C., Liu, T. & Xu, R. (2016). Changes in levels of phenylethanoid glycosides, antioxidant activity, and other quality traits in Cistanche deserticola YC Ma slices by steam processing. Chem. Pharm. Bull., 64(7), 1024–1030. doi: 10.1248/cpb.c16-00033.10.1248/cpb.c16-0003327063326Search in Google Scholar

30. Pereira, E., Pimenta, A. I., Calhelha, R. C., Antonio, A. L., Barros, L., Santos-Buelga, C., Cabo Verde, S. & Ferreira, I. C. (2017). Infusions of gamma irradiated Aloysia citrodora L. and Mentha x piperita L.: Effects on phenolic composition, cytotoxicity, antibacterial and virucidal activities. Ind. Crops Prod., 97, 582–590. doi: 10.1016/j.indcrop.2017.01.007.10.1016/j.indcrop.2017.01.007Search in Google Scholar

31. Piwowarczyk, R., Ochmian, I., Lachowicz, S., Kapusta, I., Sotek, Z. & Błaszak, M. (2020). Phytochemical parasite-host relations and interactions: A Cistanche armena case study. Sci. Total Environ., 716, 137071. doi: 10.1016/j.scitotenv.2020.137071.10.1016/j.scitotenv.2020.13707132069695Search in Google Scholar

32. Piwowarczyk, R., Sanchez Pedraja, Ó., Moreno Moral, G., Fayvush, G., Zakaryan, N., Kartashyan, N. & Aleksanyan, A. (2019). Holoparasitic Orobanchaceae (Cistanche, Diphelypaea, Orobanche, Phelipanche) in Armenia: distribution, habitats, host range and taxonomic problems. Phytotaxa, 386(1), 1–106. doi: 10.11646/phytotaxa.386.1.1.10.11646/phytotaxa.386.1.1Search in Google Scholar

33. Podsedek, A., Majewska, I., Redzynia, M., Sosnowska, D. & Koziołkiewicz, M. (2014). In vitro inhibitory effect on digestive enzymes and antioxidant potential of commonly consumed fruits. J. Agric. Food Chem., 62(20), 4610–4617. doi: 10.1021/jf5008264.10.1021/jf500826424785184Search in Google Scholar

34. Ramos, P., Herrera, R. & Moya-Leon, M. A. (2014). Handbook of anthocyanins. anthocyanins: food sources and benefits to consumer’s health. In L.M. Warner (Ed.), Handbook of Anthocyanins (pp. 373–394). Hauppauge, NY: Nova Science Publishers.Search in Google Scholar

35. Renna, M., Signore, A., Paradiso, V. M. & Santamaria, P. (2018). Faba greens, globe artichoke’s offshoots, crenate broomrape and summer squash greens: unconventional vegetables of Puglia (southern Italy) with good quality traits. Front. Plant Sci., 9, 378. doi: 10.3389/fpls.2018.00378.10.3389/fpls.2018.00378588093329636760Search in Google Scholar

36. Rossi, T., Bassani, B., Gallo, C., Maramotti, S., Noonan, D. M., Albini, A. & Bruno, A. (2015). Effect of a purified extract of olive mill waste water on endothelial cell proliferation, apoptosis, migration and capillary-like structure in vitro and in vivo. J. Bioanal. Biomed., 12, 6. doi: 10.4172/1948-593X.S12-006.10.4172/1948-593X.S12-006Search in Google Scholar

37. Rutkowski, K. P., Michalczuk, B. & Konopacki, P. (2008). Nondestructive determination of ‘Golden Delicious’ apple quality and harvest maturity. J. Fruit Ornam. Plant Res., 16, 39–52.Search in Google Scholar

38. Scharenberg, F. & Zidorn, C. (2018). Genuine and Sequestered Natural Products from the Genus Orobanche (Orobanchaceae, Lamiales). Molecules, 23, 2821. doi: 10.3390/molecules23112821.10.3390/molecules23112821627850830380787Search in Google Scholar

39. Seifert, B., Zude, M., Spinelli, L. & Torricelli, A. (2015). Optical properties of developing pip and stone fruit reveal underlying structural changes. Physiol. Plant., 153(2), 327–336. doi: 10.1111/ppl.1223210.1111/ppl.1223224853358Search in Google Scholar

40. Sivankalyani, V., Feygenberg, O., Diskin, S., Wright, B. & Alkan, N. (2016). Increased anthocyanin and flavonoids in mango fruit peel are associated with cold and pathogen resistance. Postharvest Biol. Tec., 111, 132–139. doi: 10.1016/j.postharvbio.2015.08.001.10.1016/j.postharvbio.2015.08.001Search in Google Scholar

41. Spinardi, A., Cola, G., Gardana, C. S. & Mignani, I. (2019). Variation of anthocyanins content and profile throughout fruit development and ripening of highbush blueberry cultivars grown at two different altitudes. Front. Plant Sci., 10, 1045. doi: 10.3389/fpls.2019.01045.10.3389/fpls.2019.01045673707931552064Search in Google Scholar

42. Taskova, R. M., Gotfredsen, C. H. & Jensen, S. R. (2005). Chemotaxonomic markers in Digitalideae (Plantaginaceae). Phytochemistry, 66, 1440–1447. doi: 10.1016/j.phytochem.2005.04.020.10.1016/j.phytochem.2005.04.02015907957Search in Google Scholar

43. Teleszko, M., Wojdyło, A. & Rudzińska, M. (2015). Analysis of lipophilicand hydrophilic bioactive compounds content in Sea buckthorn (Hippophae rhamnoides L.) berries. J. Agric. Food Chem., 63, 4120–4129. doi: 10.1021/acs.jafc.5b00564.10.1021/acs.jafc.5b0056425893239Search in Google Scholar

44. Tóth, G., Sólyomváry, A., Boldizsár, I. & Noszál, B. (2014). Characterization of enzyme-catalysed endogenous β-hydroxylation of phenylethanoid glycosides in Euphrasia rostkoviana Hayne at the molecular level. Process Biochem., 49, 1533–1537. doi: 10.1016/j.procbio.2014.05.023.10.1016/j.procbio.2014.05.023Search in Google Scholar

45. Trampetti, F., Pereira, C., Rodrigues, M. J., Celaj, O., D’Abrosca, B., Zengin, G., Mollica, A., Stefanucci, A. & Custódio, L. (2019). Exploring the halophyte Cistanche phelypaea (L.) Cout as a source of health promoting products: In vitro antioxidant and enzyme inhibitory properties, metabolomic profile and computational studies. J. Pharm. Biomed. Anal., 165, 119–128. doi: 10.1016/j.jpba.2018.11.053.10.1016/j.jpba.2018.11.05330529825Search in Google Scholar

46. Wang, L. L., Ding, H., Shi, Y., Lai, Q. H., Yu, H. S., Zhang, L. J. & Song, X. B. (2015). Research progress on chemical constituents of Cistanches Herba and their pharmacological effects. Chin. Herb. Med., 7(1), 1–6.10.1016/S1674-6384(15)60017-XSearch in Google Scholar

47. Yusufe, M., Mohammed, A. & Satheesh, N. (2017). Effect of duration and drying temperature on characteristics of dried tomato (Lycopersicon esculentum L.) cochoro variety. Acta Univ. Cibiniensis, Ser. E: Food Technol., 21(1), 41–50. doi: 10.1515/aucft-2017-0005.10.1515/aucft-2017-0005Search in Google Scholar

48. Xiong, W. T., Gu, L., Wang, C., Sun, H. X. & Liu, X. (2013). Anti-hyperglycemic and hypolipidemic effects of Cistanche tubulosa in type 2 diabetic db/db mice. J. Ethnopharmacol., 150(3), 935–945. doi: 10.1016/j.jep.2013.09.027.10.1016/j.jep.2013.09.02724095831Search in Google Scholar

49. Xue, Z. & Yang, B. (2016). Phenylethanoid Glycosides: Research Advances in Their Phytochemistry, Pharmacological Activity and Pharmacokinetics. Molecules, 21, 991. doi: 10.3390/molecules21080991.10.3390/molecules21080991627316027483229Search in Google Scholar

50. Yen, G. C. & Chen, H. Y. (1995). Antioxidant activity of various tea extracts in relation to their antimutagenicity. J. Agric. Food Chem., 43, 27–32. doi: 10.1021/jf00049a007.10.1021/jf00049a007Search in Google Scholar

51. Zanella, A., Vanoli, M., Rizzolo, A., Grassi, M., Eccher Zerbini, P., Cubeddu, R. & Spinelli, L. (2012). Correlating optical maturity indices and firmness in stored ‘Braeburn’ and’ Cripps Pink’ apples. In VII International Postharvest Symposium. 1012 pp. 1173–1180.10.17660/ActaHortic.2013.1012.158Search in Google Scholar

52. Zude, M., Pflanz, M., Spinelli, L., Dosche, C. & Torricelli, A. (2011). Non-destructive analysis of anthocyanins in cherries by means of Lambert-Beer and multivariate regression based on spectroscopy and scatter correction using time-resolved analysis. J. Food Eng., 103(1), 68–75. doi: 10.1016/j.jfoodeng.2010.09.02110.1016/j.jfoodeng.2010.09.021Search in Google Scholar

eISSN:
2344-150X
Język:
Angielski
Częstotliwość wydawania:
2 razy w roku
Dziedziny czasopisma:
Industrial Chemistry, other, Food Science and Technology