Otwarty dostęp

Evaluation of Service Brake Braking of Selected Group of Vehicles Depending on Wear of Brake System‘s Parts


Zacytuj

BELOEV, I. 2021. Development and evaluation of personal urban concept vehicle powered by a hydrogen fuel cell. In Acta Technologica Agriculturae, vol. 24, no. 3, pp. 112–118. DOI: https://doi.org/10.2478/ata-2021-0019 Search in Google Scholar

BOGOMOLOV, V. – KLIMENKO, V. – LEONTIEV, D. – RYZYH, L. – SMYRNOV, O. – KHOLODOV, M. 2020. Improving the brake control effectiveness of vehicles equipped with a pneumatic brake actuator. In Science & Technique, vol. 19, no. 1, pp. 55–62. DOI: https://doi.org/10.21122/2227-1031-2020-19-1-55-62 Search in Google Scholar

GERLICI, J. – KRAVCHENKO, K. – HAUSER, V. – GORBUNOV, M. – LACK, T. – MOGILA, V. 2020. Innovative technical solutions to improve the cooling efficiency of friction brake elements. In GOPALAKRISHNAN, K. – PRENTKOVSKIS, O. – JACKIVA, I. – JUNEVIČIUS, R. (eds). TRANSBALTICA XI: Transportation Science and Technology. TRANSBALTICA 2019. Lecture Notes in Intelligent Transportation and Infrastructure. Cham : Springer, pp. 341–349. DOI: https://doi.org/10.1007/978-3-030-38666-5_36 Search in Google Scholar

HE, Y. – WANG, Y. – WU, F. – YANG, R. – WANG, P. – SHE, S. – REN, D. 2023. Temperature monitoring of vehicle brake drum based on dual light fusion and deep learning. In Infrared Physics and Technology, vol. 133, article no. 104823. DOI: https://doi.org/10.1016/j.infrared.2023.104823 Search in Google Scholar

HUANG, W. – FAN, Y. – YU, M. 2020. Research on loaded brake performance test of trucks. In International Journal of Heavy Vehicle Systems, vol. 27, no. 5, pp. 648–662. DOI: https://doi.org/10.1504/IJHVS.2020.111256 Search in Google Scholar

KOLLA, E. – ONDRUŠ, J. – GOGOLA, M. – ŠARIĆ, Z. 2020. Braking characteristics of the specified modern electric vehicle during intensive braking. In Advances in Science and Technology Research Journal, vol. 14, no. 3, pp. 125–134. DOI: https://doi.org/10.12913/22998624/122197 Search in Google Scholar

KUCHAR, P. – JANOŠKO, I. – HOLÚBEK, M. – ČEDÍK, J. – PEXA, M. 2022. The accuracy assessment of devices used for distance measuring in dynamic vehicle tests. In Acta Technologica Agriculturae, vol. 25, no. 3, pp. 150–156. DOI: https://doi.org/10.2478/ata-2022-0023 Search in Google Scholar

LEONTIEV, D. N. – BOGOMOLOV, V. A. – KLYMENKO, V. I. – RYZHYH, L. A. – LOMAKA, S. I. – SUHOMLIN, A. V. – KURIPKA, A. V. – FROLOV, A. A. 2022. About braking of wheeled vehicle equipped with automated brake control system. In Science & Technique, vol. 21, no. 1, pp. 63–72. DOI: https://doi.org/10.21122/2227-1031-2022-21-1-63-72 Search in Google Scholar

MAČUŽIĆ, S. – SAVELJIĆ, I. – LUKIĆ, J. – GLIŠOVIĆ, J. – FILIPOVIĆ, N. 2015 Thermal analysis of solid and vented disc brake during the braking process. In Journal of Serbian Society for Computational Machines, vol. 9, no. 2, pp. 19–26. DOI: https://doi.org/10.5937/jsscm1502019M Search in Google Scholar

Mădălin-Florin, P. – NICOLAE, V. 2019. Study of brake system parameters for commercial vehicles. In BURNETE, N. – VARGA, B. (eds). Proceedings of the 4th International Congress of Automotive and Transport Engineering (AMMA 2018). Cham : Springer, pp. 686–694. DOI: https://doi.org/10.1007/978-3-319-94409-8_80 Search in Google Scholar

MILLER, J. I. – CEBON, D. 2010. A high performance pneumatic braking system for heavy vehicles. In Vehicle System Dynamics, vol. 48, no. 1, pp. 373–392. DOI: https://doi.org/10.1080/00423111003774472 Search in Google Scholar

MIN, K. – YEON, K. – JO, Y. – SIM, G. – SUNWOO, M. – HAN, M. 2020. Vehicle deceleration prediction based on deep neural network at braking conditions. In International Journal of Automotive Technology, vol. 21, pp. 91–102. DOI: https://doi.org/10.1007/s12239-020-0010-2 Search in Google Scholar

MOHAMMED, A. Q. – HUSSAIN, I. Y. – ALI, A. H. – ABDULLAH, O. I. 2023. Experimental and numerical analysis for thermal problem of frictional brake system. In Computational Thermal Sciences: An International Journal, vol. 15, no. 4, pp. 55–68. DOI: https://doi.org/10.1615/ComputThermalScien.v15.i4.50 Search in Google Scholar

MONDAL, S. – NANDI, A. 2023. Improvement of braking system towards maintaining constant brake pedal feel during vehicle deceleration. In Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 45, article no. 237. DOI: https://doi.org/10.1007/s40430-023-04146-5 Search in Google Scholar

POPA, M. F. – CAPĂTĂ, M. S. D. – BURNETE, N. 2020. Experimental research on brake behavior for different types of commercial vehicles. In DUMITRU, I. – COVACIU, D. – RACILA, L. – ROSCA, A. (eds). 30th SIAR International Congress of Automotive and Transport Engineering. SMAT 2019. Cham : Springer, 406–413. DOI: https://doi.org/10.1007/978-3-030-32564-0_48 Search in Google Scholar

KUMAR, V. V. – KUMARAN, S. S. 2019. Friction material composite: types of brake friction material formulations and effects of various ingredients on brake performance – a review. In Materials Research Express, vol. 6, article no. 082005. DOI: https://doi.org/10.1088/2053-1591/ab2404 Search in Google Scholar

SLOVAK REPUBLIC. Act no. 74/2018 Methodical instruction for carrying out inspections of brake systems of vehicles of categories M2, M3, N2, N3, O3 and O4 during technical inspections. Search in Google Scholar

STRAKY, H. – KOCHEM, M. – SCHMITT, J. – ISERMANN, R. 2003. Influences of braking system faults on vehicle dynamics. In Control Engineering Practice, vol. 11, no. 3, pp. 337–343. DOI: https://doi.org/10.1016/S0967-0661(02)00301-5 Search in Google Scholar

ŚWIDERSKI, A. – BORUCKA, A. – JACYNA-GOŁDA, I. – SZCZEPAŃSKI, E. 2019. Wear of brake system components in various operating conditions of vehicle in the transport company. In Eksploatacja i Niezawodność – Maintenance and Reliability, vol. 21, no. 1, pp.1–9. DOI: https://doi.org/10.17531/ein.2019.1.1 Search in Google Scholar

TOMA, M. – ANDREESCU, C. – MICU, D. 2017. Comparative study on the lateral run-out of friction surfaces measurement of brake discs using a brake roller tester and a dial gauge. In MATEC Web of Conferences. 21st Innovative Manufacturing Engineering & Energy International Conference – IManE&E 2017, vol. 112, article no. 07010. DOI: https://doi.org/10.1051/matecconf/201711207010 Search in Google Scholar

WEI, L. – WANG, X. – LIU, H. – LI, L. 2022. System modeling, experimental validation and pressure estimation of the pneumatic braking system. In Mechanical Systems and Signal Processing, vol. 187, article no. 109938. DOI: https://doi.org/10.1016/j.ymssp.2022.109938 Search in Google Scholar

ZHANG, Z. – SUN, N. – CHEN, Y. – AHMADIAN, M. 2021. Detailed modeling of pneumatic braking in long combination vehicles. In SAE International Journal of Commercial Vehicles, vol. 14, no. 3, pp. 245–258. DOI: https://doi.org/10.4271/02-14-03-0020 Search in Google Scholar

ZHENG, H. – MA, S. – LIU, Y. 2018. Vehicle braking force distribution with electronic pneumatic braking and hierarchical structure for commercial vehicle. In Proceedings of the Institution of Mechanical Engineers, Part 1: Journal of Systems and Control Engineering, vol. 232, no. 4, pp. 481–493. DOI: https://doi.org/10.1177/0959651818757877 Search in Google Scholar

ZULHILMI, I. M. – HEERWAN, M. P. – ASYRAF, S. M. – SOLLEHUDIN, I. M. – ISHAK, I. M. 2020. Experimental study on the effect of emergency braking without anti-lock braking system to vehicle dynamics behaviour. In International Journal of Automotive and Mechanical Engineering (IJAME), vol. 17, no. 2, pp. 7832–7841. DOI: https://doi.org/10.15282/ijame.17.2.2020.02.0583 Search in Google Scholar

eISSN:
1338-5267
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Engineering, Introductions and Overviews, other