Accès libre

Evaluation of Service Brake Braking of Selected Group of Vehicles Depending on Wear of Brake System‘s Parts

À propos de cet article

Citez

BELOEV, I. 2021. Development and evaluation of personal urban concept vehicle powered by a hydrogen fuel cell. In Acta Technologica Agriculturae, vol. 24, no. 3, pp. 112–118. DOI: https://doi.org/10.2478/ata-2021-0019 Search in Google Scholar

BOGOMOLOV, V. – KLIMENKO, V. – LEONTIEV, D. – RYZYH, L. – SMYRNOV, O. – KHOLODOV, M. 2020. Improving the brake control effectiveness of vehicles equipped with a pneumatic brake actuator. In Science & Technique, vol. 19, no. 1, pp. 55–62. DOI: https://doi.org/10.21122/2227-1031-2020-19-1-55-62 Search in Google Scholar

GERLICI, J. – KRAVCHENKO, K. – HAUSER, V. – GORBUNOV, M. – LACK, T. – MOGILA, V. 2020. Innovative technical solutions to improve the cooling efficiency of friction brake elements. In GOPALAKRISHNAN, K. – PRENTKOVSKIS, O. – JACKIVA, I. – JUNEVIČIUS, R. (eds). TRANSBALTICA XI: Transportation Science and Technology. TRANSBALTICA 2019. Lecture Notes in Intelligent Transportation and Infrastructure. Cham : Springer, pp. 341–349. DOI: https://doi.org/10.1007/978-3-030-38666-5_36 Search in Google Scholar

HE, Y. – WANG, Y. – WU, F. – YANG, R. – WANG, P. – SHE, S. – REN, D. 2023. Temperature monitoring of vehicle brake drum based on dual light fusion and deep learning. In Infrared Physics and Technology, vol. 133, article no. 104823. DOI: https://doi.org/10.1016/j.infrared.2023.104823 Search in Google Scholar

HUANG, W. – FAN, Y. – YU, M. 2020. Research on loaded brake performance test of trucks. In International Journal of Heavy Vehicle Systems, vol. 27, no. 5, pp. 648–662. DOI: https://doi.org/10.1504/IJHVS.2020.111256 Search in Google Scholar

KOLLA, E. – ONDRUŠ, J. – GOGOLA, M. – ŠARIĆ, Z. 2020. Braking characteristics of the specified modern electric vehicle during intensive braking. In Advances in Science and Technology Research Journal, vol. 14, no. 3, pp. 125–134. DOI: https://doi.org/10.12913/22998624/122197 Search in Google Scholar

KUCHAR, P. – JANOŠKO, I. – HOLÚBEK, M. – ČEDÍK, J. – PEXA, M. 2022. The accuracy assessment of devices used for distance measuring in dynamic vehicle tests. In Acta Technologica Agriculturae, vol. 25, no. 3, pp. 150–156. DOI: https://doi.org/10.2478/ata-2022-0023 Search in Google Scholar

LEONTIEV, D. N. – BOGOMOLOV, V. A. – KLYMENKO, V. I. – RYZHYH, L. A. – LOMAKA, S. I. – SUHOMLIN, A. V. – KURIPKA, A. V. – FROLOV, A. A. 2022. About braking of wheeled vehicle equipped with automated brake control system. In Science & Technique, vol. 21, no. 1, pp. 63–72. DOI: https://doi.org/10.21122/2227-1031-2022-21-1-63-72 Search in Google Scholar

MAČUŽIĆ, S. – SAVELJIĆ, I. – LUKIĆ, J. – GLIŠOVIĆ, J. – FILIPOVIĆ, N. 2015 Thermal analysis of solid and vented disc brake during the braking process. In Journal of Serbian Society for Computational Machines, vol. 9, no. 2, pp. 19–26. DOI: https://doi.org/10.5937/jsscm1502019M Search in Google Scholar

Mădălin-Florin, P. – NICOLAE, V. 2019. Study of brake system parameters for commercial vehicles. In BURNETE, N. – VARGA, B. (eds). Proceedings of the 4th International Congress of Automotive and Transport Engineering (AMMA 2018). Cham : Springer, pp. 686–694. DOI: https://doi.org/10.1007/978-3-319-94409-8_80 Search in Google Scholar

MILLER, J. I. – CEBON, D. 2010. A high performance pneumatic braking system for heavy vehicles. In Vehicle System Dynamics, vol. 48, no. 1, pp. 373–392. DOI: https://doi.org/10.1080/00423111003774472 Search in Google Scholar

MIN, K. – YEON, K. – JO, Y. – SIM, G. – SUNWOO, M. – HAN, M. 2020. Vehicle deceleration prediction based on deep neural network at braking conditions. In International Journal of Automotive Technology, vol. 21, pp. 91–102. DOI: https://doi.org/10.1007/s12239-020-0010-2 Search in Google Scholar

MOHAMMED, A. Q. – HUSSAIN, I. Y. – ALI, A. H. – ABDULLAH, O. I. 2023. Experimental and numerical analysis for thermal problem of frictional brake system. In Computational Thermal Sciences: An International Journal, vol. 15, no. 4, pp. 55–68. DOI: https://doi.org/10.1615/ComputThermalScien.v15.i4.50 Search in Google Scholar

MONDAL, S. – NANDI, A. 2023. Improvement of braking system towards maintaining constant brake pedal feel during vehicle deceleration. In Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 45, article no. 237. DOI: https://doi.org/10.1007/s40430-023-04146-5 Search in Google Scholar

POPA, M. F. – CAPĂTĂ, M. S. D. – BURNETE, N. 2020. Experimental research on brake behavior for different types of commercial vehicles. In DUMITRU, I. – COVACIU, D. – RACILA, L. – ROSCA, A. (eds). 30th SIAR International Congress of Automotive and Transport Engineering. SMAT 2019. Cham : Springer, 406–413. DOI: https://doi.org/10.1007/978-3-030-32564-0_48 Search in Google Scholar

KUMAR, V. V. – KUMARAN, S. S. 2019. Friction material composite: types of brake friction material formulations and effects of various ingredients on brake performance – a review. In Materials Research Express, vol. 6, article no. 082005. DOI: https://doi.org/10.1088/2053-1591/ab2404 Search in Google Scholar

SLOVAK REPUBLIC. Act no. 74/2018 Methodical instruction for carrying out inspections of brake systems of vehicles of categories M2, M3, N2, N3, O3 and O4 during technical inspections. Search in Google Scholar

STRAKY, H. – KOCHEM, M. – SCHMITT, J. – ISERMANN, R. 2003. Influences of braking system faults on vehicle dynamics. In Control Engineering Practice, vol. 11, no. 3, pp. 337–343. DOI: https://doi.org/10.1016/S0967-0661(02)00301-5 Search in Google Scholar

ŚWIDERSKI, A. – BORUCKA, A. – JACYNA-GOŁDA, I. – SZCZEPAŃSKI, E. 2019. Wear of brake system components in various operating conditions of vehicle in the transport company. In Eksploatacja i Niezawodność – Maintenance and Reliability, vol. 21, no. 1, pp.1–9. DOI: https://doi.org/10.17531/ein.2019.1.1 Search in Google Scholar

TOMA, M. – ANDREESCU, C. – MICU, D. 2017. Comparative study on the lateral run-out of friction surfaces measurement of brake discs using a brake roller tester and a dial gauge. In MATEC Web of Conferences. 21st Innovative Manufacturing Engineering & Energy International Conference – IManE&E 2017, vol. 112, article no. 07010. DOI: https://doi.org/10.1051/matecconf/201711207010 Search in Google Scholar

WEI, L. – WANG, X. – LIU, H. – LI, L. 2022. System modeling, experimental validation and pressure estimation of the pneumatic braking system. In Mechanical Systems and Signal Processing, vol. 187, article no. 109938. DOI: https://doi.org/10.1016/j.ymssp.2022.109938 Search in Google Scholar

ZHANG, Z. – SUN, N. – CHEN, Y. – AHMADIAN, M. 2021. Detailed modeling of pneumatic braking in long combination vehicles. In SAE International Journal of Commercial Vehicles, vol. 14, no. 3, pp. 245–258. DOI: https://doi.org/10.4271/02-14-03-0020 Search in Google Scholar

ZHENG, H. – MA, S. – LIU, Y. 2018. Vehicle braking force distribution with electronic pneumatic braking and hierarchical structure for commercial vehicle. In Proceedings of the Institution of Mechanical Engineers, Part 1: Journal of Systems and Control Engineering, vol. 232, no. 4, pp. 481–493. DOI: https://doi.org/10.1177/0959651818757877 Search in Google Scholar

ZULHILMI, I. M. – HEERWAN, M. P. – ASYRAF, S. M. – SOLLEHUDIN, I. M. – ISHAK, I. M. 2020. Experimental study on the effect of emergency braking without anti-lock braking system to vehicle dynamics behaviour. In International Journal of Automotive and Mechanical Engineering (IJAME), vol. 17, no. 2, pp. 7832–7841. DOI: https://doi.org/10.15282/ijame.17.2.2020.02.0583 Search in Google Scholar

eISSN:
1338-5267
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Engineering, Introductions and Overviews, other