Otwarty dostęp

Fish communities in Baltic Sea coastal bays; using eDNA metabarcoding to assess vertical profile and traditional method comparison

 oraz   
22 wrz 2025

Zacytuj
Pobierz okładkę

Aglen, A., Engås, A., Huse, I., Michalsen, K., Stensholt, B.K. (1999). How vertical fish distribution may affect survey results. ICES Journal of Marine Science, 56(3), 345-360; https://doi.org/10.1006/JMSC.1999.0449. Search in Google Scholar

Alfaro-Cordova, E., Ortiz-Alvarez, C., Alfaro-Shigueto, J., Mangel, J. C., García, O., & Velez-Zuazo, X. (2022). What lies beneath? Revealing biodiversity through eDNA analysis in Lobos de Afuera Islands, Peru. Latin american journal of aquatic research, 50(4), 642-659. Search in Google Scholar

Altschul, S.F., Gish, W., Miller, W., Myers E. W., Lipman, D.J. (1990) Basic Local Alignment Search Tool. Journal of Molecular Biology, 215, 403-410. Search in Google Scholar

Andruszkiewicz, E. A., Starks, H.A., Chavez, F.P., Sassoubre, L.M., Block, B.A., Boehm, A.B. (2017). Biomonitoring of marine vertebrates in Monterey Bay using eDNA metabarcoding. PLoS ONE, 12(4), e0176343; https://doi.org/10.1371/journal.pone.0176343. Search in Google Scholar

Aneer, G. (1989). Herring (Clupea harengus L.) spawning and spawning ground characteristics in the Baltic Sea. Fisheries Research, 8(2), 169-195; https://doi.org/10.1016/0165-7836(89)90030-1. Search in Google Scholar

Aspillaga, E., Bartumeus, F., Starr, R. M., López-Sanz, Ŕ., Linares, C., Diáz, D., Garrabou, J., Zabala, M., Hereu, B. (2017). Thermal stratification drives movement of a coastal apex predator. Scientific Reports 2017 7:1, 7(1), 1-10; https://doi.org/10.1038/s41598-017-00576-z. Search in Google Scholar

Benoît, H.P., Swain, D.P. (2008). Impacts of environmental change and direct and indirect harvesting effects on the dynamics of a marine fish community. Canadian Journal of Fisheries and Aquatic Sciences, 65(10), 2088-2104; https://doi.org/10.1139/F08-112. Search in Google Scholar

Bracken, F.S.A., Rooney, S.M., Kelly-Quinn, M., King, J.J., Carlsson, J. (2019). Identifying spawning sites and other critical habitat in lotic systems using eDNA “snapshots”: A case study using the sea lamprey Petromyzon marinus L. Ecology and Evolution, 9(1), 553-567; https://doi.org/10.1002/ECE3.4777. Search in Google Scholar

Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., Madden, T. L. (2009) BLAST+: architecture and applications. BMC Bioinformatics, 10, 421; https://doi.org/10.1186/1471-2105-10-421. Search in Google Scholar

Carvalho, C.O., Gromstad, W., Dunthorn, M., Karlsen, H. E., Schrřder-Nielsen, A., Ready, J.S., Haugaasen, T., Sřrnes, G., de Boer, H., Mauvisseau, Q. (2024) Harnessing eDNA metabarcoding to investigate fish community composition and its seasonal changes in the Oslo fjord. Scientific Reports, 14, 10154; https://doi.org/10.1038/s41598-024-60762-8. Search in Google Scholar

Chouinard, P. M., Dutil, J.D. (2011). The structure of demersal fish assemblages in a cold, highly stratified environment. ICES Journal of Marine Science, 68(9), 1896-1908; https://doi.org/10.1093/icesjms/fsr125. Search in Google Scholar

Collins, R.A., Wangensteen, O.S., O’Gorman, E.J., Mariani, S., Sims, D.W., Genner, M.J. (2018). Persistence of environmental DNA in marine systems. Communications Biology, 1(1), 185; https://doi.org/10.1038/s42003-018-0192-6. Search in Google Scholar

Dejean, T., Valentini, A., Duparc, A., Pellier-Cuit, S., Pompanon, F., Taberlet, P., Miaud, C. (2011). Persistence of environmental DNA in freshwater ecosystems. PLoS ONE, 6(8), e0023398; https://doi.org/10.1371/JOURNAL.PONE.0023398. Search in Google Scholar

Deng, J., Zhang, X., Yao, X, Rao, J., Dai, F., Wang, H., Wang, Y., Jiang, W. (2024). eDNA metabarcoding reveals differences in fish diversity and community structure in Danjiang River. Scientific Reports 14, 29460; https://doi.org/10.1038/s41598-024-80907-z. Search in Google Scholar

Edgar, R.C. (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 26, 2460-2461; https://doi.org/10.1093/bioinformatics/btq461. Search in Google Scholar

Eklöf, J.S., Sundblad, G., Erlandsson, M., Donadi, S., Hansen, J.P., Eriksson, B.K., Bergström, U. (2020). A spatial regime shift from predator to prey dominance in a large coastal ecosystem. Communications Biology 2020 3:1, 3(1), 1-9; https://doi.org/10.1038/s42003-020-01180-0. Search in Google Scholar

Fiskbarometern (2024). Resursöversikt [2023]. Https://fiskbarometern.se [2024-02-15]. Search in Google Scholar

Freitas, C., Olsen, E.M., Knutsen, H., Albretsen, J., Moland, E. (2016). Temperature-associated habitat selection in a cold-water marine fish. Journal of Animal Ecology, 85(3), 628-637; https://doi.org/10.1111/1365-2656.12458. Search in Google Scholar

Gillet, B., Cottet, M., Destanque, T., Kue, K., Descloux, S., Chanudet, V., Hughes, S. (2018). Direct fishing and eDNA metabarcoding for biomonitoring during a 3-year survey significantly improves number of fish detected around a South East Asian reservoir. PLoS ONE, 13(12), e0208592; https://doi.org/10.1371/journal.pone.0208592. Search in Google Scholar

Gold, Z., Sprague, J., Kushner, D.J., Marin, E.Z., Barber, P.H. (2021). eDNA metabarcoding as a biomonitoring tool for marine protected areas. PLoS ONE, 16, e0238557; https://doi.org/10.1371/journal.pone.0238557. Search in Google Scholar

Golpour, A., Šmejkal, M., Čech, M., dos Santos, R.A., Souza, A. T., Jůza, T., Martínez, C., Bartoň, D., Vašek, M., Draštík, V., Kolařík, T., Kočvara, L., Říha, M., Peterka, J., Blabolil, P. (2022). Similarities and Differences in Fish Community Composition Accessed by Electrofishing, Gill Netting, Seining, Trawling, and Water eDNA Metabarcoding in Temperate Reservoirs. Frontiers in Ecology and Evolution, 10, 913279; https://doi.org/10.3389/fevo.2022.913279. Search in Google Scholar

Gotelli, N.J., Colwell, R.K. (2001). Quantifying biodiversity: Procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters, 4(4), 379-391; https://doi.org/10.1046/J.1461-0248.2001.00230.X. Search in Google Scholar

Hänfling, B., Handley, L.L., Read, D.S., Hahn, C., Li, J., Nichols, P., Blackman, R.C., Oliver, A., Winfield, I.J. (2016). Environmental DNA metabarcoding of lake fish communities reflects long-term data from established survey methods. Molecular Ecology, 25(13), 3101-3119; https://doi.org/10.1111/MEC.13660. Search in Google Scholar

Harrison, J.B., Sunday, J.M., Rogers, S.M. (2019). Predicting the fate of eDNA in the environment and implications for studying biodiversity. Proceedings of the Royal Society B, 286, 20191409; http://dx.doi.org/10.1098/rspb.2019.1409, Search in Google Scholar

He, Y., Zhao, X., Shi, C., Peng, K., Wang, Z., Jiang, Z. (2024) Fish community monitoring in floodplain lakes: eDNA metabarcoding and traditional sampling revealed inconsistent fish community composition. Ecological Indicators, 166, 112467; https://doi.org/10.1016/j.ecolind.2024.112467. Search in Google Scholar

Hering, D., Borja, A., Jones J.I., Pont, D., Boets, P., Bouchez, A., Bruce, K., Drakare, S., Hänfling, B., Kahlert, M., Leese, F., Meissner, K., Mergen, P., Reyjol, Y., Segurado, P., Vogler, A., Kelly, M. (2018). Implementation options for DNA-based identification into ecological status assessment under the European Water Framework Directive. Water Research, 138, 192-205; https://doi.org/10.1016/J.WATRES.2018.03.003. Search in Google Scholar

Hervé, A., Domaizon, I., Baudoin, J.M., Dejean, T., Gibert, P., Jean, P., Peroux, T., Raymond, J.C., Valentini, A., Vautier, M., Logez, M. (2022). Spatio-temporal variability of eDNA signal and its implication for fish monitoring in lakes. PLoS ONE, 17(8), e0272660; https://doi.org/10.1371/journal.pone.0272660. Search in Google Scholar

ICES. (2023). Baltic Fisheries Assessment Working Group (WGBFAS); https://doi.org/10.17895/ices.pub.23123768. Search in Google Scholar

Irisson, J.-O., Paris, C. B., Guigand, C., Planes, S. (2010). Vertical distribution and ontogenetic “migration” in coral reef fish larvae. Limnology and Oceanography, 55(2), 909-919; https://doi.org/10.4319/LO.2010.55.2.0909. Search in Google Scholar

Jackson, D.A., Peres-Neto, P.R., Olden, J.D. (2001). What controls who is where in freshwater fish communities -The roles of biotic, abiotic, and spatial factors. Canadian Journal of Fisheries and Aquatic Sciences, 58(1), 157-170; https://doi.org/10.1139/CJFAS-58-1-157. Search in Google Scholar

Jerde, C.L., Mahon, A.R., Chadderton, W.L., Lodge, D.M. (2011). “Sight-unseen” detection of rare aquatic species using environmental DNA. Conservation Letters, 4(2), 150-157; https://doi.org/10.1111/J.1755-263X.2010.00158.X. Search in Google Scholar

Kasmi, Y., Blancke, T., Eschbach, E., Möckel, B., Casas, L., Bernreuther, M., Nogueira, P., Delfs, G., Kadhim, S., Meißner, T., Rödiger, M., Eladdadi, A., Stransky, C., Hanel, R. (2023). Atlantic cod (Gadus morhua) assessment approaches in the North and Baltic Sea: A comparison of environmental DNA analysis versus bottom trawl sampling. Frontiers in Marine Science, 10, 1058354; https://doi.org/10.3389/fmars.2023.1058354. Search in Google Scholar

Keck, F., Blackman, R.C., Bossart, R., Brantschen, J., Couton, M., Hürlemann, S., Kirschner, D., Locher, N., Zhang, H., Altermatt, F. (2022). Meta-analysis shows both congruence and complementarity of DNA and eDNA metabarcoding to traditional methods for biological community assessment. Molecular Ecology, 31(6), 1820-1835; https://doi.org/10.1111/MEC.16364. Search in Google Scholar

Kirtane, A., Wieczorek, D., Noji, T., Baskin, L., Ober, C., Plosica, R., Chenoweth, A., Lynch, K., Sassoubre, L. (2021). Quantification of Environmental DNA (eDNA) shedding and decay rates for three commercially harvested fish species and comparison between eDNA detection and trawl catches. Environmental DNA, 3(6), 1142-1155; https://doi.org/10.1002/EDN3.236. Search in Google Scholar

Klobucar, S.L., Rodgers, T.W., Budy, P. (2017). At the forefront: Evidence of the applicability of using environmental DNA to quantify the abundance of fish populations in natural lentic waters with additional sampling considerations. Canadian Journal of Fisheries and Aquatic Sciences, 74(12), 2030-2034; https://doi.org/10.1139/cjfas-2017-0114. Search in Google Scholar

Knudsen, S.W., Ebert, R.B., Hesselsře, M., Kuntke, F., Hassingboe, J., Mortensen, P.B., Thomsen, P.F., Sigsgaard, E.E., Hansen, B.K., Nielsen, E.E., Möller, P.R. (2019). Species-specific detection and quantification of environmental DNA from marine fishes in the Baltic Sea. Journal of Experimental Marine Biology and Ecology, 510, 31-45; https://doi.org/10.1016/j.jembe.2018.09.004. Search in Google Scholar

Lacoursière-Roussel, A., Rosabal, M., Bernatchez, L. (2016). Estimating fish abundance and biomass from eDNA concentrations: variability among capture methods and environmental conditions. Molecular Ecology Resources, 16(6), 1401-1414; https://doi.org/10.1111/1755-0998.12522. Search in Google Scholar

Littlefair, J.E., Hrenchuk, L.E., Blanchfield, P.J., Rennie, M.D., Cristescu, M.E. (2021). Thermal stratification and fish thermal preference explain vertical eDNA distributions in lakes. Molecular ecology, 30(13), 3083-3096.; https://doi.org/10.1111/MEC.15623. Search in Google Scholar

Li, Z., Jiang, P., Wang, L., Liu, L., Li, M., & Zou, K. (2023). A comparison of seasonal composition and structure of fish community between environmental DNA technology and gillnetting in the Pearl River Estuary, China. Ecological Indicators, 147, 109915.; https://doi.org/10.1016/j.ecolind.2023.109915. Search in Google Scholar

Ljunggren, L., Sandström, A., Bergström, U., Mattila, J., Lappalainen, A., Johansson, G., Sundblad, G., Casini, M., Kaljuste, O., Eriksson, B. K. (2010). Recruitment failure of coastal predatory fish in the Baltic Sea coincident with an offshore ecosystem regime shift. ICES Journal of Marine Science, 67(8), 1587-1595; https://doi.org/10.1093/ICES-JMS/FSQ109. Search in Google Scholar

Martin, M. (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. Journal, 17, 10. Search in Google Scholar

Maruyama, A., Nakamura, K., Yamanaka, H., Kondoh, M., Minamoto, T. (2014). The release rate of environmental DNA from juvenile and adult fish. PLoS ONE, 9(12), e114639; https://doi.org/10.1371/journal.pone.0114639. Search in Google Scholar

Miya, M., Sado, T., Oka, S. I., Fukuchi, T. (2022). The use of citizen science in fish eDNA metabarcoding for evaluating regional biodiversity in a coastal marine region: A pilot study. Metabarcoding and Metagenomics 6: e80444; https://doi.org/10.3897/MBMG.6.80444. Search in Google Scholar

Näslund, J., Didrikas, T., Hellström, M. (2019). Inventering av fisk vid Gåsefjärden i Karlskrona skärgård med nätprovfiske och eDNA. AquaBiota Rapport 2019, 15. Search in Google Scholar

Nilsson, H., Appelberg, M., Axenrot, T., Vinterstare, J. (2022) Dödliga, invasiva och icke-invasiva provtagningsmetoder av akvatiska resurser: möjligheter att anpassa SLU Aquas metodik. Aqua Reports, 2022:12. Sveriges lantbruksuniversitet (SLU), Institutionen för akvatiska resurser. Search in Google Scholar

Ogonowski, M., Karlsson, E., Vasemägi, A., Sundin, J., Bohman, P., Sundblad, G. (2023). Temperature moderates eDNA-biomass relationships in northern pike. Environmental DNA, 5(4), 750-765;https://doi.org/10.1002/EDN3.440. Search in Google Scholar

Oksanen, J., Simpson G.L., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O’Hara, R.B., Solymos, P., Stevens, M.H.H., Szoecs, E., Wagner, H., Barbour, M., Bedward, M., Bolker, B., Borcard, D., Carvalho, G., Chirico, M., De Caceres, M., Durand, S., … Weedon, J. (2022). Community Ecology Package [R package vegan version 2.6-4]. Comprehensive R Archive Network (CRAN). https://CRAN.R-project.org/package=vegan Search in Google Scholar

Olsson, J., Bergström, L., Lappalainen, A., Heikinheimo, O., Ådjers, K., Saks, L., Svirgsden, R., Kruze, E., Lo ys, L., Lejk, A., Smolinski, S., Winkler, H., Schulz, N., Stottrup, J.G. (2015). Guidelines for COASTAL FISH monitoring sampling methods of HELCOM. Search in Google Scholar

Olsson, J., Jakubavičiūte, E., Kaljuste, O., Larsson, N., Bergström, U., Casini, M., Cardinale, M., Hjelm, J., Byström, P., Anderson, E. (2019). The first large-scale assessment of three-spined stickleback (Gasterosteus aculeatus) biomass and spatial distribution in the Baltic Sea. ICES Journal of Marine Science, 76(6), 1653-1665; https://doi.org/10.1093/ICESJMS/FSZ078. Search in Google Scholar

Pecuchet, L., Törnroos, A., Lindegren, M. (2016). Patterns and drivers of fish community assembly in a large marine ecosystem. Marine Ecology Progress Series, 546, 239-248; https://doi.org/10.3354/MEPS11613. Search in Google Scholar

Polte, P., Kotterba, P., Moll, D., Von Nordheim, L. (2017). Ontogenetic loops in habitat use highlight the importance of littoral habitats for early life-stages of oceanic fishes in temperate waters. Scientific Reports, 7, 42709; https://doi.org/10.1038/srep42709. Search in Google Scholar

Pont, D., Meulenbroek, P., Bammer, V., Dejean, T., Erős, T., Jean, P., Lenhardt, M., Nagel, C., Pekarik, L., Schabuss, M., Stoeckle, B.C., Stoica, E., Zornig, H., Weigand, A., Valentini, A. (2023). Quantitative monitoring of diverse fish communities on a large scale combining eDNA metabarcoding and qPCR. Molecular Ecology Resources, 23(2), 396-409; https://doi.org/10.1111/1755-0998.13715. Search in Google Scholar

Pont, D., Rocle, M., Valentini, A., Civade, R., Jean, P., Maire, A., Roset, N., Schabuss, M., Zornig, H., Dejean, T. (2018). Environmental DNA reveals quantitative patterns of fish biodiversity in large rivers despite its downstream transportation. Scientific reports 8, 10361; https://doi.org/10.1038/s41598-018-28424-8. Search in Google Scholar

Rourke, M.L., Fowler, A.M., Hughes, J.M., Broadhurst, M.K., DiBattista, J.D., Fielder, S., Wilkes Walburn, J., Furlan, E.M. (2022). Environmental DNA (eDNA) as a tool for assessing fish biomass: A review of approaches and future considerations for resource surveys. Environmental DNA, 4(1), 9-33; https://doi.org/10.10-02/EDN3.185. Search in Google Scholar

Sassoubre, L.M., Yamahara, K.M., Gardner, L.D., Block, B.A., Boehm, A.B. (2016). Quantification of Environmental DNA (eDNA) Shedding and Decay Rates for Three Marine Fish. Environmental Science and Technology, 50(19), 10456-10464; https://doi.org/10.1021/acs.est.6b03114. Search in Google Scholar

Schreiber, L., Castellanos-Galindo, G.A., Robertson, D.R., Torchin, M., Chavarria, K., Laakmann, S., Saltonstall, K. (2023). Environmental DNA (eDNA) reveals potential for interoceanic fish invasions across the Panama Canal. Ecology and Evolution, 13(1), e9675; https://doi.org/10.10-02/ece3.9675. Search in Google Scholar

Sieben, K., Ljunggren, L., Bergström, U., Eriksson, B.K. (2011). A meso-predator release of stickleback promotes recruitment of macroalgae in the Baltic Sea. Journal of Experimental Marine Biology and Ecology, 397(2), 79-84; https://doi.org/10.1016/J.JEMBE.2010.11.020. Search in Google Scholar

Sigsgaard, E.E., Carl. H., Möller, P.R., Thomsen, P.F. (2015). Monitoring the near-extinct European weather loach in Denmark based on environmental DNA from water samples. Biological Conservation, 183, 46-52; https://doi.org/10.1016/J.BIOCON.2014.11.023. Search in Google Scholar

Sigsgaard, E.E., Nielsen. I.B., Carl, H., Krag. M.A., Knudsen, S.W., Xing, Y., Holm-Hansen. T.H., Möller, P.R., Thomsen, P.F. (2017). Seawater environmental DNA reflects seasonality of a coastal fish community. Marine Biology, 164(6), 128; https://doi.org/10.1007/s00227-017-3147-4. Search in Google Scholar

Snoeijs-Leijonmalm, P., Andrén, E. (2017). Why is the Baltic Sea so special to live in? In: Snoeijs-Leijonmalm, P., Schubert, H., Radziejewska, T. (eds) Biological Oceanography of the Baltic Sea. Springer, Dordrecht; https://doi.org/10.1007/978-94-007-0668-2_2. Search in Google Scholar

Spens, J., Evans, A.R., Halfmaerten, D., Knudsen, S.W., Sengupta, M.E., Mak, S.S.T., Sigsgaard, E.E., Hellström, M. (2017) Comparison of capture and storage methods for aqueous macrobial eDNA using an optimized extraction protocol: advantage of enclosed filter. Methods in Ecology and Evolution, 8, 635-645; https://doi.org/10.11-11/2041-210X.12683 Search in Google Scholar

Staveley, T.A.B., Hellström, M., Birgersson, V., Hernvall, P., Schibli, H., Axelsson, E., Larliander, L., Molander, L., Thorstad, E.B., Berntsen H.H., Ahlbeck Bergendahl, I. (2025) Detection of non-native pink salmon (Oncorhynchus gorbuscha) in Swedish rivers using eDNA. Environmental DNA, 7(3); https://doi.org/10.1002/edn3.70117 Search in Google Scholar

Staveley, T.A.B., Hernvall, P., Stjärnkvist, N., van der Meijs, F., Wikström, S.A., Gullström, M. (2020). Exploring sea-grass fish assemblages in relation to the habitat patch mosaic in the brackish Baltic Sea. Marine Biodiversity, 50(1), 1-7; https://doi.org/10.1007/s12526-019-01-025-y. Search in Google Scholar

Staveley, T.A.B., Jacoby, D.M.P., Perry, D., van der Meijs, F., Lagenfelt, I., Cremle, M., Gullström, M. (2019). Sea surface temperature dictates movement and habitat connectivity of Atlantic cod in a coastal fjord system. Ecology and Evolution, 9(16), 9076-9086; https://doi.org/10.1002/ECE3.5453. Search in Google Scholar

Stefanoudis, P.V., Gress, E., Pitt, J.M., Smith, S.R., Kincaid, T., Rivers M., Andradi-Brown, D.A., Rowlands, G., Woodall, L. C., Rogers, A.D. (2019). Depth-dependent structuring of reef fish assemblages from the shallows to the rariphotic zone. Frontiers in Marine Science, 6:307; https://doi.org/10.3389/fmars.2019.00307. Search in Google Scholar

Stoeckle, M.Y., Adolf, J., Charlop-Powers, Z., Dunton, K.J., Hinks, G., Vanmorter, S.M. (2021). Trawl and eDNA assessment of marine fish diversity, seasonality, and relative abundance in coastal New Jersey, USA. ICES Journal of Marine Science, 78(1), 293-304; https://doi.org/1-0.1093/icesjms/fsaa225. Search in Google Scholar

Svedäng, H., Almqvist, G., Axenrot, T. (2023). A Baltic pelagic fish community revisited: Indications of profound changes in species composition in the Stockholm Archipelago. Fisheries Research, 266, 106780; https://doi.org/10.1016/J.FISHRES.2023.106780. Search in Google Scholar

Takahara, T., Minamoto, T., Yamanaka, H., Doi, H., Kawabata, Z. (2012). Estimation of fish biomass using environmental DNA. PLoS ONE, 7(4), e35868; https://doi.org/10.1371/journal.pone.0035868. Search in Google Scholar

R Core Team. (2022). R: A language and environment for statistical computing (Version 4.2.2). The R Foundation for Statistical Computing. https://www.R-project.org/ Search in Google Scholar

Thomsen, P.F., Kielgast, J., Iversen, L.L., Möller, P.R., Rasmussen, M., Willerslev, E. (2012). Detection of a Diverse Marine Fish Fauna Using Environmental DNA from Sea-water Samples. PLoS ONE, 7(8), e41732; https://doi.org/10.1371/journal.pone.0041732. Search in Google Scholar

Thomsen, P.F., Kielgast, J., Iversen, L.L., Wiuf, C., Rasmussen, M., Gilbert, M.T.P., Orlando, L., Willerslev, E. (2012). Monitoring endangered freshwater biodiversity using environmental DNA. Molecular Ecology, 21(11), 2565-2573; https://doi.org/10.1111/J.1365-294X.2011.05418.X. Search in Google Scholar

Urban, P., Jacobsen, M.W., Bekkevold, D., Nielsen, A., Storr-Paulsen, M., Nijland, R., Nielsen, E.E. (2024). eDNA based bycatch assessment in pelagic fish catches. Scientific Reports, 14, 2976; https://doi.org/10.1038/s41598-024-52543-0. Search in Google Scholar

Valdez-Moreno, M., Ivanova, N.V., Elías-Gutiérrez, M., Pedersen, S.L., Bessonov, K., Hebert, P.D.N. (2019). Using eDNA to biomonitor the fish community in a tropical oligotrophic lake. PLoS ONE, 14(4), e215505; https://doi.org/10.1371/journal.pone.0215505. Search in Google Scholar

Yamamoto, S., Masuda, R., Sato, Y., Sado, T., Araki, H., Kondoh, M., Minamoto, T., Miya, M. (2017). Environmental DNA metabarcoding reveals local fish communities in a species-rich coastal sea. Scientific Reports, 7, 40368; https://doi.org/10.1038/srep40368. Search in Google Scholar

Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Nauki biologiczne, Zoologia, Nauki biologiczne, inne