[
Aglen, A., Engås, A., Huse, I., Michalsen, K., Stensholt, B.K. (1999). How vertical fish distribution may affect survey results. ICES Journal of Marine Science, 56(3), 345-360; https://doi.org/10.1006/JMSC.1999.0449.
]Search in Google Scholar
[
Alfaro-Cordova, E., Ortiz-Alvarez, C., Alfaro-Shigueto, J., Mangel, J. C., García, O., & Velez-Zuazo, X. (2022). What lies beneath? Revealing biodiversity through eDNA analysis in Lobos de Afuera Islands, Peru. Latin american journal of aquatic research, 50(4), 642-659.
]Search in Google Scholar
[
Altschul, S.F., Gish, W., Miller, W., Myers E. W., Lipman, D.J. (1990) Basic Local Alignment Search Tool. Journal of Molecular Biology, 215, 403-410.
]Search in Google Scholar
[
Andruszkiewicz, E. A., Starks, H.A., Chavez, F.P., Sassoubre, L.M., Block, B.A., Boehm, A.B. (2017). Biomonitoring of marine vertebrates in Monterey Bay using eDNA metabarcoding. PLoS ONE, 12(4), e0176343; https://doi.org/10.1371/journal.pone.0176343.
]Search in Google Scholar
[
Aneer, G. (1989). Herring (Clupea harengus L.) spawning and spawning ground characteristics in the Baltic Sea. Fisheries Research, 8(2), 169-195; https://doi.org/10.1016/0165-7836(89)90030-1.
]Search in Google Scholar
[
Aspillaga, E., Bartumeus, F., Starr, R. M., López-Sanz, Ŕ., Linares, C., Diáz, D., Garrabou, J., Zabala, M., Hereu, B. (2017). Thermal stratification drives movement of a coastal apex predator. Scientific Reports 2017 7:1, 7(1), 1-10; https://doi.org/10.1038/s41598-017-00576-z.
]Search in Google Scholar
[
Benoît, H.P., Swain, D.P. (2008). Impacts of environmental change and direct and indirect harvesting effects on the dynamics of a marine fish community. Canadian Journal of Fisheries and Aquatic Sciences, 65(10), 2088-2104; https://doi.org/10.1139/F08-112.
]Search in Google Scholar
[
Bracken, F.S.A., Rooney, S.M., Kelly-Quinn, M., King, J.J., Carlsson, J. (2019). Identifying spawning sites and other critical habitat in lotic systems using eDNA “snapshots”: A case study using the sea lamprey Petromyzon marinus L. Ecology and Evolution, 9(1), 553-567; https://doi.org/10.1002/ECE3.4777.
]Search in Google Scholar
[
Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., Madden, T. L. (2009) BLAST+: architecture and applications. BMC Bioinformatics, 10, 421; https://doi.org/10.1186/1471-2105-10-421.
]Search in Google Scholar
[
Carvalho, C.O., Gromstad, W., Dunthorn, M., Karlsen, H. E., Schrřder-Nielsen, A., Ready, J.S., Haugaasen, T., Sřrnes, G., de Boer, H., Mauvisseau, Q. (2024) Harnessing eDNA metabarcoding to investigate fish community composition and its seasonal changes in the Oslo fjord. Scientific Reports, 14, 10154; https://doi.org/10.1038/s41598-024-60762-8.
]Search in Google Scholar
[
Chouinard, P. M., Dutil, J.D. (2011). The structure of demersal fish assemblages in a cold, highly stratified environment. ICES Journal of Marine Science, 68(9), 1896-1908; https://doi.org/10.1093/icesjms/fsr125.
]Search in Google Scholar
[
Collins, R.A., Wangensteen, O.S., O’Gorman, E.J., Mariani, S., Sims, D.W., Genner, M.J. (2018). Persistence of environmental DNA in marine systems. Communications Biology, 1(1), 185; https://doi.org/10.1038/s42003-018-0192-6.
]Search in Google Scholar
[
Dejean, T., Valentini, A., Duparc, A., Pellier-Cuit, S., Pompanon, F., Taberlet, P., Miaud, C. (2011). Persistence of environmental DNA in freshwater ecosystems. PLoS ONE, 6(8), e0023398; https://doi.org/10.1371/JOURNAL.PONE.0023398.
]Search in Google Scholar
[
Deng, J., Zhang, X., Yao, X, Rao, J., Dai, F., Wang, H., Wang, Y., Jiang, W. (2024). eDNA metabarcoding reveals differences in fish diversity and community structure in Danjiang River. Scientific Reports 14, 29460; https://doi.org/10.1038/s41598-024-80907-z.
]Search in Google Scholar
[
Edgar, R.C. (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 26, 2460-2461; https://doi.org/10.1093/bioinformatics/btq461.
]Search in Google Scholar
[
Eklöf, J.S., Sundblad, G., Erlandsson, M., Donadi, S., Hansen, J.P., Eriksson, B.K., Bergström, U. (2020). A spatial regime shift from predator to prey dominance in a large coastal ecosystem. Communications Biology 2020 3:1, 3(1), 1-9; https://doi.org/10.1038/s42003-020-01180-0.
]Search in Google Scholar
[
Fiskbarometern (2024). Resursöversikt [2023]. Https://fiskbarometern.se [2024-02-15].
]Search in Google Scholar
[
Freitas, C., Olsen, E.M., Knutsen, H., Albretsen, J., Moland, E. (2016). Temperature-associated habitat selection in a cold-water marine fish. Journal of Animal Ecology, 85(3), 628-637; https://doi.org/10.1111/1365-2656.12458.
]Search in Google Scholar
[
Gillet, B., Cottet, M., Destanque, T., Kue, K., Descloux, S., Chanudet, V., Hughes, S. (2018). Direct fishing and eDNA metabarcoding for biomonitoring during a 3-year survey significantly improves number of fish detected around a South East Asian reservoir. PLoS ONE, 13(12), e0208592; https://doi.org/10.1371/journal.pone.0208592.
]Search in Google Scholar
[
Gold, Z., Sprague, J., Kushner, D.J., Marin, E.Z., Barber, P.H. (2021). eDNA metabarcoding as a biomonitoring tool for marine protected areas. PLoS ONE, 16, e0238557; https://doi.org/10.1371/journal.pone.0238557.
]Search in Google Scholar
[
Golpour, A., Šmejkal, M., Čech, M., dos Santos, R.A., Souza, A. T., Jůza, T., Martínez, C., Bartoň, D., Vašek, M., Draštík, V., Kolařík, T., Kočvara, L., Říha, M., Peterka, J., Blabolil, P. (2022). Similarities and Differences in Fish Community Composition Accessed by Electrofishing, Gill Netting, Seining, Trawling, and Water eDNA Metabarcoding in Temperate Reservoirs. Frontiers in Ecology and Evolution, 10, 913279; https://doi.org/10.3389/fevo.2022.913279.
]Search in Google Scholar
[
Gotelli, N.J., Colwell, R.K. (2001). Quantifying biodiversity: Procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters, 4(4), 379-391; https://doi.org/10.1046/J.1461-0248.2001.00230.X.
]Search in Google Scholar
[
Hänfling, B., Handley, L.L., Read, D.S., Hahn, C., Li, J., Nichols, P., Blackman, R.C., Oliver, A., Winfield, I.J. (2016). Environmental DNA metabarcoding of lake fish communities reflects long-term data from established survey methods. Molecular Ecology, 25(13), 3101-3119; https://doi.org/10.1111/MEC.13660.
]Search in Google Scholar
[
Harrison, J.B., Sunday, J.M., Rogers, S.M. (2019). Predicting the fate of eDNA in the environment and implications for studying biodiversity. Proceedings of the Royal Society B, 286, 20191409; http://dx.doi.org/10.1098/rspb.2019.1409,
]Search in Google Scholar
[
He, Y., Zhao, X., Shi, C., Peng, K., Wang, Z., Jiang, Z. (2024) Fish community monitoring in floodplain lakes: eDNA metabarcoding and traditional sampling revealed inconsistent fish community composition. Ecological Indicators, 166, 112467; https://doi.org/10.1016/j.ecolind.2024.112467.
]Search in Google Scholar
[
Hering, D., Borja, A., Jones J.I., Pont, D., Boets, P., Bouchez, A., Bruce, K., Drakare, S., Hänfling, B., Kahlert, M., Leese, F., Meissner, K., Mergen, P., Reyjol, Y., Segurado, P., Vogler, A., Kelly, M. (2018). Implementation options for DNA-based identification into ecological status assessment under the European Water Framework Directive. Water Research, 138, 192-205; https://doi.org/10.1016/J.WATRES.2018.03.003.
]Search in Google Scholar
[
Hervé, A., Domaizon, I., Baudoin, J.M., Dejean, T., Gibert, P., Jean, P., Peroux, T., Raymond, J.C., Valentini, A., Vautier, M., Logez, M. (2022). Spatio-temporal variability of eDNA signal and its implication for fish monitoring in lakes. PLoS ONE, 17(8), e0272660; https://doi.org/10.1371/journal.pone.0272660.
]Search in Google Scholar
[
ICES. (2023). Baltic Fisheries Assessment Working Group (WGBFAS); https://doi.org/10.17895/ices.pub.23123768.
]Search in Google Scholar
[
Irisson, J.-O., Paris, C. B., Guigand, C., Planes, S. (2010). Vertical distribution and ontogenetic “migration” in coral reef fish larvae. Limnology and Oceanography, 55(2), 909-919; https://doi.org/10.4319/LO.2010.55.2.0909.
]Search in Google Scholar
[
Jackson, D.A., Peres-Neto, P.R., Olden, J.D. (2001). What controls who is where in freshwater fish communities -The roles of biotic, abiotic, and spatial factors. Canadian Journal of Fisheries and Aquatic Sciences, 58(1), 157-170; https://doi.org/10.1139/CJFAS-58-1-157.
]Search in Google Scholar
[
Jerde, C.L., Mahon, A.R., Chadderton, W.L., Lodge, D.M. (2011). “Sight-unseen” detection of rare aquatic species using environmental DNA. Conservation Letters, 4(2), 150-157; https://doi.org/10.1111/J.1755-263X.2010.00158.X.
]Search in Google Scholar
[
Kasmi, Y., Blancke, T., Eschbach, E., Möckel, B., Casas, L., Bernreuther, M., Nogueira, P., Delfs, G., Kadhim, S., Meißner, T., Rödiger, M., Eladdadi, A., Stransky, C., Hanel, R. (2023). Atlantic cod (Gadus morhua) assessment approaches in the North and Baltic Sea: A comparison of environmental DNA analysis versus bottom trawl sampling. Frontiers in Marine Science, 10, 1058354; https://doi.org/10.3389/fmars.2023.1058354.
]Search in Google Scholar
[
Keck, F., Blackman, R.C., Bossart, R., Brantschen, J., Couton, M., Hürlemann, S., Kirschner, D., Locher, N., Zhang, H., Altermatt, F. (2022). Meta-analysis shows both congruence and complementarity of DNA and eDNA metabarcoding to traditional methods for biological community assessment. Molecular Ecology, 31(6), 1820-1835; https://doi.org/10.1111/MEC.16364.
]Search in Google Scholar
[
Kirtane, A., Wieczorek, D., Noji, T., Baskin, L., Ober, C., Plosica, R., Chenoweth, A., Lynch, K., Sassoubre, L. (2021). Quantification of Environmental DNA (eDNA) shedding and decay rates for three commercially harvested fish species and comparison between eDNA detection and trawl catches. Environmental DNA, 3(6), 1142-1155; https://doi.org/10.1002/EDN3.236.
]Search in Google Scholar
[
Klobucar, S.L., Rodgers, T.W., Budy, P. (2017). At the forefront: Evidence of the applicability of using environmental DNA to quantify the abundance of fish populations in natural lentic waters with additional sampling considerations. Canadian Journal of Fisheries and Aquatic Sciences, 74(12), 2030-2034; https://doi.org/10.1139/cjfas-2017-0114.
]Search in Google Scholar
[
Knudsen, S.W., Ebert, R.B., Hesselsře, M., Kuntke, F., Hassingboe, J., Mortensen, P.B., Thomsen, P.F., Sigsgaard, E.E., Hansen, B.K., Nielsen, E.E., Möller, P.R. (2019). Species-specific detection and quantification of environmental DNA from marine fishes in the Baltic Sea. Journal of Experimental Marine Biology and Ecology, 510, 31-45; https://doi.org/10.1016/j.jembe.2018.09.004.
]Search in Google Scholar
[
Lacoursière-Roussel, A., Rosabal, M., Bernatchez, L. (2016). Estimating fish abundance and biomass from eDNA concentrations: variability among capture methods and environmental conditions. Molecular Ecology Resources, 16(6), 1401-1414; https://doi.org/10.1111/1755-0998.12522.
]Search in Google Scholar
[
Littlefair, J.E., Hrenchuk, L.E., Blanchfield, P.J., Rennie, M.D., Cristescu, M.E. (2021). Thermal stratification and fish thermal preference explain vertical eDNA distributions in lakes. Molecular ecology, 30(13), 3083-3096.; https://doi.org/10.1111/MEC.15623.
]Search in Google Scholar
[
Li, Z., Jiang, P., Wang, L., Liu, L., Li, M., & Zou, K. (2023). A comparison of seasonal composition and structure of fish community between environmental DNA technology and gillnetting in the Pearl River Estuary, China. Ecological Indicators, 147, 109915.; https://doi.org/10.1016/j.ecolind.2023.109915.
]Search in Google Scholar
[
Ljunggren, L., Sandström, A., Bergström, U., Mattila, J., Lappalainen, A., Johansson, G., Sundblad, G., Casini, M., Kaljuste, O., Eriksson, B. K. (2010). Recruitment failure of coastal predatory fish in the Baltic Sea coincident with an offshore ecosystem regime shift. ICES Journal of Marine Science, 67(8), 1587-1595; https://doi.org/10.1093/ICES-JMS/FSQ109.
]Search in Google Scholar
[
Martin, M. (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. Journal, 17, 10.
]Search in Google Scholar
[
Maruyama, A., Nakamura, K., Yamanaka, H., Kondoh, M., Minamoto, T. (2014). The release rate of environmental DNA from juvenile and adult fish. PLoS ONE, 9(12), e114639; https://doi.org/10.1371/journal.pone.0114639.
]Search in Google Scholar
[
Miya, M., Sado, T., Oka, S. I., Fukuchi, T. (2022). The use of citizen science in fish eDNA metabarcoding for evaluating regional biodiversity in a coastal marine region: A pilot study. Metabarcoding and Metagenomics 6: e80444; https://doi.org/10.3897/MBMG.6.80444.
]Search in Google Scholar
[
Näslund, J., Didrikas, T., Hellström, M. (2019). Inventering av fisk vid Gåsefjärden i Karlskrona skärgård med nätprovfiske och eDNA. AquaBiota Rapport 2019, 15.
]Search in Google Scholar
[
Nilsson, H., Appelberg, M., Axenrot, T., Vinterstare, J. (2022) Dödliga, invasiva och icke-invasiva provtagningsmetoder av akvatiska resurser: möjligheter att anpassa SLU Aquas metodik. Aqua Reports, 2022:12. Sveriges lantbruksuniversitet (SLU), Institutionen för akvatiska resurser.
]Search in Google Scholar
[
Ogonowski, M., Karlsson, E., Vasemägi, A., Sundin, J., Bohman, P., Sundblad, G. (2023). Temperature moderates eDNA-biomass relationships in northern pike. Environmental DNA, 5(4), 750-765;https://doi.org/10.1002/EDN3.440.
]Search in Google Scholar
[
Oksanen, J., Simpson G.L., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O’Hara, R.B., Solymos, P., Stevens, M.H.H., Szoecs, E., Wagner, H., Barbour, M., Bedward, M., Bolker, B., Borcard, D., Carvalho, G., Chirico, M., De Caceres, M., Durand, S., … Weedon, J. (2022). Community Ecology Package [R package vegan version 2.6-4]. Comprehensive R Archive Network (CRAN). https://CRAN.R-project.org/package=vegan
]Search in Google Scholar
[
Olsson, J., Bergström, L., Lappalainen, A., Heikinheimo, O., Ådjers, K., Saks, L., Svirgsden, R., Kruze, E., Lo ys, L., Lejk, A., Smolinski, S., Winkler, H., Schulz, N., Stottrup, J.G. (2015). Guidelines for COASTAL FISH monitoring sampling methods of HELCOM.
]Search in Google Scholar
[
Olsson, J., Jakubavičiūte, E., Kaljuste, O., Larsson, N., Bergström, U., Casini, M., Cardinale, M., Hjelm, J., Byström, P., Anderson, E. (2019). The first large-scale assessment of three-spined stickleback (Gasterosteus aculeatus) biomass and spatial distribution in the Baltic Sea. ICES Journal of Marine Science, 76(6), 1653-1665; https://doi.org/10.1093/ICESJMS/FSZ078.
]Search in Google Scholar
[
Pecuchet, L., Törnroos, A., Lindegren, M. (2016). Patterns and drivers of fish community assembly in a large marine ecosystem. Marine Ecology Progress Series, 546, 239-248; https://doi.org/10.3354/MEPS11613.
]Search in Google Scholar
[
Polte, P., Kotterba, P., Moll, D., Von Nordheim, L. (2017). Ontogenetic loops in habitat use highlight the importance of littoral habitats for early life-stages of oceanic fishes in temperate waters. Scientific Reports, 7, 42709; https://doi.org/10.1038/srep42709.
]Search in Google Scholar
[
Pont, D., Meulenbroek, P., Bammer, V., Dejean, T., Erős, T., Jean, P., Lenhardt, M., Nagel, C., Pekarik, L., Schabuss, M., Stoeckle, B.C., Stoica, E., Zornig, H., Weigand, A., Valentini, A. (2023). Quantitative monitoring of diverse fish communities on a large scale combining eDNA metabarcoding and qPCR. Molecular Ecology Resources, 23(2), 396-409; https://doi.org/10.1111/1755-0998.13715.
]Search in Google Scholar
[
Pont, D., Rocle, M., Valentini, A., Civade, R., Jean, P., Maire, A., Roset, N., Schabuss, M., Zornig, H., Dejean, T. (2018). Environmental DNA reveals quantitative patterns of fish biodiversity in large rivers despite its downstream transportation. Scientific reports 8, 10361; https://doi.org/10.1038/s41598-018-28424-8.
]Search in Google Scholar
[
Rourke, M.L., Fowler, A.M., Hughes, J.M., Broadhurst, M.K., DiBattista, J.D., Fielder, S., Wilkes Walburn, J., Furlan, E.M. (2022). Environmental DNA (eDNA) as a tool for assessing fish biomass: A review of approaches and future considerations for resource surveys. Environmental DNA, 4(1), 9-33; https://doi.org/10.10-02/EDN3.185.
]Search in Google Scholar
[
Sassoubre, L.M., Yamahara, K.M., Gardner, L.D., Block, B.A., Boehm, A.B. (2016). Quantification of Environmental DNA (eDNA) Shedding and Decay Rates for Three Marine Fish. Environmental Science and Technology, 50(19), 10456-10464; https://doi.org/10.1021/acs.est.6b03114.
]Search in Google Scholar
[
Schreiber, L., Castellanos-Galindo, G.A., Robertson, D.R., Torchin, M., Chavarria, K., Laakmann, S., Saltonstall, K. (2023). Environmental DNA (eDNA) reveals potential for interoceanic fish invasions across the Panama Canal. Ecology and Evolution, 13(1), e9675; https://doi.org/10.10-02/ece3.9675.
]Search in Google Scholar
[
Sieben, K., Ljunggren, L., Bergström, U., Eriksson, B.K. (2011). A meso-predator release of stickleback promotes recruitment of macroalgae in the Baltic Sea. Journal of Experimental Marine Biology and Ecology, 397(2), 79-84; https://doi.org/10.1016/J.JEMBE.2010.11.020.
]Search in Google Scholar
[
Sigsgaard, E.E., Carl. H., Möller, P.R., Thomsen, P.F. (2015). Monitoring the near-extinct European weather loach in Denmark based on environmental DNA from water samples. Biological Conservation, 183, 46-52; https://doi.org/10.1016/J.BIOCON.2014.11.023.
]Search in Google Scholar
[
Sigsgaard, E.E., Nielsen. I.B., Carl, H., Krag. M.A., Knudsen, S.W., Xing, Y., Holm-Hansen. T.H., Möller, P.R., Thomsen, P.F. (2017). Seawater environmental DNA reflects seasonality of a coastal fish community. Marine Biology, 164(6), 128; https://doi.org/10.1007/s00227-017-3147-4.
]Search in Google Scholar
[
Snoeijs-Leijonmalm, P., Andrén, E. (2017). Why is the Baltic Sea so special to live in? In: Snoeijs-Leijonmalm, P., Schubert, H., Radziejewska, T. (eds) Biological Oceanography of the Baltic Sea. Springer, Dordrecht; https://doi.org/10.1007/978-94-007-0668-2_2.
]Search in Google Scholar
[
Spens, J., Evans, A.R., Halfmaerten, D., Knudsen, S.W., Sengupta, M.E., Mak, S.S.T., Sigsgaard, E.E., Hellström, M. (2017) Comparison of capture and storage methods for aqueous macrobial eDNA using an optimized extraction protocol: advantage of enclosed filter. Methods in Ecology and Evolution, 8, 635-645; https://doi.org/10.11-11/2041-210X.12683
]Search in Google Scholar
[
Staveley, T.A.B., Hellström, M., Birgersson, V., Hernvall, P., Schibli, H., Axelsson, E., Larliander, L., Molander, L., Thorstad, E.B., Berntsen H.H., Ahlbeck Bergendahl, I. (2025) Detection of non-native pink salmon (Oncorhynchus gorbuscha) in Swedish rivers using eDNA. Environmental DNA, 7(3); https://doi.org/10.1002/edn3.70117
]Search in Google Scholar
[
Staveley, T.A.B., Hernvall, P., Stjärnkvist, N., van der Meijs, F., Wikström, S.A., Gullström, M. (2020). Exploring sea-grass fish assemblages in relation to the habitat patch mosaic in the brackish Baltic Sea. Marine Biodiversity, 50(1), 1-7; https://doi.org/10.1007/s12526-019-01-025-y.
]Search in Google Scholar
[
Staveley, T.A.B., Jacoby, D.M.P., Perry, D., van der Meijs, F., Lagenfelt, I., Cremle, M., Gullström, M. (2019). Sea surface temperature dictates movement and habitat connectivity of Atlantic cod in a coastal fjord system. Ecology and Evolution, 9(16), 9076-9086; https://doi.org/10.1002/ECE3.5453.
]Search in Google Scholar
[
Stefanoudis, P.V., Gress, E., Pitt, J.M., Smith, S.R., Kincaid, T., Rivers M., Andradi-Brown, D.A., Rowlands, G., Woodall, L. C., Rogers, A.D. (2019). Depth-dependent structuring of reef fish assemblages from the shallows to the rariphotic zone. Frontiers in Marine Science, 6:307; https://doi.org/10.3389/fmars.2019.00307.
]Search in Google Scholar
[
Stoeckle, M.Y., Adolf, J., Charlop-Powers, Z., Dunton, K.J., Hinks, G., Vanmorter, S.M. (2021). Trawl and eDNA assessment of marine fish diversity, seasonality, and relative abundance in coastal New Jersey, USA. ICES Journal of Marine Science, 78(1), 293-304; https://doi.org/1-0.1093/icesjms/fsaa225.
]Search in Google Scholar
[
Svedäng, H., Almqvist, G., Axenrot, T. (2023). A Baltic pelagic fish community revisited: Indications of profound changes in species composition in the Stockholm Archipelago. Fisheries Research, 266, 106780; https://doi.org/10.1016/J.FISHRES.2023.106780.
]Search in Google Scholar
[
Takahara, T., Minamoto, T., Yamanaka, H., Doi, H., Kawabata, Z. (2012). Estimation of fish biomass using environmental DNA. PLoS ONE, 7(4), e35868; https://doi.org/10.1371/journal.pone.0035868.
]Search in Google Scholar
[
R Core Team. (2022). R: A language and environment for statistical computing (Version 4.2.2). The R Foundation for Statistical Computing. https://www.R-project.org/
]Search in Google Scholar
[
Thomsen, P.F., Kielgast, J., Iversen, L.L., Möller, P.R., Rasmussen, M., Willerslev, E. (2012). Detection of a Diverse Marine Fish Fauna Using Environmental DNA from Sea-water Samples. PLoS ONE, 7(8), e41732; https://doi.org/10.1371/journal.pone.0041732.
]Search in Google Scholar
[
Thomsen, P.F., Kielgast, J., Iversen, L.L., Wiuf, C., Rasmussen, M., Gilbert, M.T.P., Orlando, L., Willerslev, E. (2012). Monitoring endangered freshwater biodiversity using environmental DNA. Molecular Ecology, 21(11), 2565-2573; https://doi.org/10.1111/J.1365-294X.2011.05418.X.
]Search in Google Scholar
[
Urban, P., Jacobsen, M.W., Bekkevold, D., Nielsen, A., Storr-Paulsen, M., Nijland, R., Nielsen, E.E. (2024). eDNA based bycatch assessment in pelagic fish catches. Scientific Reports, 14, 2976; https://doi.org/10.1038/s41598-024-52543-0.
]Search in Google Scholar
[
Valdez-Moreno, M., Ivanova, N.V., Elías-Gutiérrez, M., Pedersen, S.L., Bessonov, K., Hebert, P.D.N. (2019). Using eDNA to biomonitor the fish community in a tropical oligotrophic lake. PLoS ONE, 14(4), e215505; https://doi.org/10.1371/journal.pone.0215505.
]Search in Google Scholar
[
Yamamoto, S., Masuda, R., Sato, Y., Sado, T., Araki, H., Kondoh, M., Minamoto, T., Miya, M. (2017). Environmental DNA metabarcoding reveals local fish communities in a species-rich coastal sea. Scientific Reports, 7, 40368; https://doi.org/10.1038/srep40368.
]Search in Google Scholar