[Alabi J.O., Wuaku M., Anotaenwere C.C., Okedoyin D.O., Adelusi O.O., Ike K.A., Gray D., Kholif A.E., Subedi K., Anele U.Y. (2024). A mixture of prebiotics, essential oil blends, and onion peel did not affect greenhouse gas emissions or nutrient degradability, but altered volatile fatty acids production in dairy cows using rumen simulation technique (RUSITEC). Fermentation, 10: 324.]Search in Google Scholar
[Anassori E., Dalir-Naghadeh B., Pirmohammadi R., Hadian M. (2015). Changes in blood profile in sheep receiving raw garlic, garlic oil or monensin. J. Anim. Physiol. Anim. Nutr. (Berl.), 99: 114–122.]Search in Google Scholar
[AOAC (2019). Official Methods of Analysis of AOAC International. Washington DC, Oxford University Press.]Search in Google Scholar
[Bauman D.E., Griinari J.M. (2003). Nutritional regulation of milk fat synthesis. Annu. Rev. Nutr., 23: 203–227.]Search in Google Scholar
[Beauchemin K.A., McGinn S.M. (2006). Methane emissions from beef cattle: Effects of fumaric acid, essential oil, and canola oil. J. Anim. Sci., 84: 1489–1496.]Search in Google Scholar
[Benchaar C. (2015). Diet supplementation with cinnamon oil, cinnamaldehyde, or monensin does not reduce enteric methane production of dairy cows. Animal, 10: 418–425.]Search in Google Scholar
[Benchaar C., Duynisveld J.L., Charmley E. (2006). Effects of monensin and increasing dose levels of a mixture of essential oil compounds on intake, digestion and growth performance of beef cattle. Can. J. Anim. Sci., 86: 91–96.]Search in Google Scholar
[Benchaar C., Chaves A. V., Fraser G.R., Wang Y., Beauchemin K.A., McAllister T.A. (2007 a). Effects of essential oils and their components on in vitro rumen microbial fermentation. Can. J. Anim. Sci., 87: 413–419.]Search in Google Scholar
[Benchaar C., Petit H. V., Berthiaume R., Ouellet D.R., Chiquette J., Chouinardt P.Y. (2007 b). Effects of essential oils on digestion, ruminal fermentation, rumen microbial populations, milk production, and milk composition in dairy cows fed alfalfa silage or corn silage. J. Dairy Sci., 90: 886–897.]Search in Google Scholar
[Benchaar C., Lettat A., Hassanat F., Yang W.Z., Forster R.J., Petit H. V., Chouinard P.Y. (2012). Eugenol for dairy cows fed low or high concentrate diets: Effects on digestion, ruminal fermentation characteristics, rumen microbial populations and milk fatty acid profile. Anim. Feed. Sci. Technol., 178: 139–150.]Search in Google Scholar
[Bionaz M., Vargas-Bello-Pérez E., Busato S. (2020). Advances in fatty acids nutrition in dairy cows: from gut to cells and effects on performance. J. Anim. Sci. Biotechnol., 11: 110.]Search in Google Scholar
[Blanch M., Carro M.D., Ranilla M.J., Viso A., Vázquez-Añón M., Bach A. (2016). Influence of a mixture of cinnamaldehyde and garlic oil on rumen fermentation, feeding behavior and performance of lactating dairy cows. Anim. Feed Sci. Technol., 219: 313–323.]Search in Google Scholar
[Boutoial K., Ferrandini E., Rovira S., García V., López M.B. (2013). Effect of feeding goats with rosemary (Rosmarinus officinalis spp.) by-product on milk and cheese properties. Small Rumin. Res., 112: 147–153.]Search in Google Scholar
[Calsamiglia S., Busquet M., Cardozo P.W., Castillejos L., Ferret A. (2007). Invited review: Essential oils as modifiers of rumen microbial fermentation. J. Dairy Sci., 90: 2580–2595.]Search in Google Scholar
[Cardozo P.W., Calsamiglia S., Ferret A., Kamel C. (2005). Screening for the effects of natural plant extracts at different pH on in vitro rumen microbial fermentation of a high-concentrate diet for beef cattle. J. Anim. Sci., 83: 2572–2579.]Search in Google Scholar
[Chaves A.V., Stanford K., Dugan M.E.R., Gibson L.L., McAllister T.A., Herk F. Van, Benchaar C. (2008). Effects of cinnamalde-hyde, garlic and juniper berry essential oils on rumen fermentation, blood metabolites, growth performance, and carcass characteristics of growing lambs. Livest. Sci., 117: 215–224.]Search in Google Scholar
[Cobellis G., Petrozzi A., Forte C., Acuti G., Orrù M., Marcotullio M.C., Aquino A., Nicolini A., Mazza V., Trabalza-Marinucci M. (2015). Evaluation of the effects of mitigation on methane and ammonia production by using Origanum vulgare L. and Rosmarinus officinalis L. essential oils on in vitro rumen fermentation systems. Sustainability, 7: 12856–12869.]Search in Google Scholar
[Cobellis G., Trabalza-Marinucci M., Yu Z. (2016). Critical evaluation of essential oils as rumen modifiers in ruminant nutrition: A review. Sci. Total Environ., 545–546: 556–568.]Search in Google Scholar
[Ebeid H.M., Mengwei L., Kholif A.E., Hassan F. ul, Lijuan P., Xin L., Chengjian Y. (2020). Moringa oleifera oil modulates rumen microflora to mediate in vitro fermentation kinetics and methanogenesis in total mix rations. Curr. Microbiol., 77: 1271–1282.]Search in Google Scholar
[Elcoso G., Zweifel B., Bach A. (2019). Effects of a blend of essential oils on milk yield and feed efficiency of lactating dairy cows. Appl. Anim. Sci., 35: 304–311.]Search in Google Scholar
[El-Essawy A.M., Abdou A.R., EL- Gendy M.H. (2019). Impact of anise, clove, and thyme essential oils as feed supplements on the productive performance and digestion of Barki ewes. Aust. J. Basic. Appl. Sci., 13: 1–13.]Search in Google Scholar
[Farvid M.S., Ding M., Pan A., Sun Q., Chiuve S.E., Steffen L.M., Willett W.C., Hu F.B. (2014). Dietary linoleic acid and risk of coronary heart disease: A systematic review and meta-analysis of prospective cohort studies. Circulation, 130: 1568–1578.]Search in Google Scholar
[Flores A.J., Garciarena A.D., Hernández Vieyra J.M., Beauchemin K.A., Colombatto D. (2013). Effects of specific essential oil compounds on the ruminal environment, milk production and milk composition of lactating dairy cows at pasture. Anim. Feed Sci. Technol., 186: 20–26.]Search in Google Scholar
[Hanus O., Samkova E., Křížova L., Hasoňova L., Kala R. (2018). Role of fatty acids in milk fat and the influence of selected factors on their variability – a review. Molecules, 23: 1636.]Search in Google Scholar
[Hernandez A., Kholif A.E., Lugo-Coyote R., Elghandour M.M.Y., Cipriano M., Rodríguez G.B., Odongo N.E., Salem A.Z.M. (2017). The effect of garlic oil, xylanase enzyme and yeast on biomethane and carbon dioxide production from 60-d old Holstein dairy calves fed a high concentrate diet. J. Clean. Prod., 142: 2384–2392.]Search in Google Scholar
[Huang Y., Xu H., Ding M., Li J., Wang D., Li H., Sun M., Xia F., Bai H., Wang M., Mo M., Shi L. (2023). Screening of rosemary essential oils with different phytochemicals for antioxidant capacity, keratinocyte cytotoxicity, and anti-proliferative activity. Molecules, 28: 586.]Search in Google Scholar
[Ike K.A., Adelusi O.O., Alabi J.O., Olagunju L.K., Wuaku M., Anotaenwere C.C., Okedoyin D.O., Gray D., Dele P.A., Subedi K., Kholif A.E., Anele U.Y. (2024). Effects of different essential oil blends and fumaric acid on in vitro fermentation, greenhouse gases, nutrient degradability, and total and molar proportions of volatile fatty acid production in a total mixed ration for dairy cattle. Agriculture, 14: 876.]Search in Google Scholar
[Jakobsen M.U., O’Reilly E.J., Heitmann B.L., Pereira M.A., Bälter K., Fraser G.E., Goldbourt U., Hallmans G., Knekt P., Liu S., Pietinen P., Spiegelman D., Stevens J., Virtamo J., Willett W.C., Ascherio A. (2009). Major types of dietary fat and risk of coronary heart disease: A pooled analysis of 11 cohort studies. Am. J. Clin. Nutr., 89: 1425–1432.]Search in Google Scholar
[Khateri N., Azizi O., Jahani-Azizabadi H. (2017). Effects of a specific blend of essential oils on apparent nutrient digestion, rumen fermentation and rumen microbial populations in sheep fed a 50:50 alfalfa hay:concentrate diet. Asian-Australas. J. Anim. Sci., 30: 370–378.]Search in Google Scholar
[Khattab I.M., Elgandy M.F. (2024). Essential oils in animal diets to improve the fatty acids composition of meat and milk quality in ruminant. In: Essential Oils, Viskelis J., Surguchov A., (eds). Rijeka, IntechOpen, pp. 1–9.]Search in Google Scholar
[Kholif A.E., Olafadehan O.A. (2021). Essential oils and phytogenic feed additives in ruminant diet: chemistry, ruminal microbiota and fermentation, feed utilization and productive performance. Phytochem. Rev., 20: 1087–1108.]Search in Google Scholar
[Kholif A.E., Olafadehan O.A. (2022). Dietary strategies to enrich milk with healthy fatty acids – A review. Ann. Anim. Sci., 22: 523–536.]Search in Google Scholar
[Kholif S.M., Morsy T.A., Abdo M.M., Matloup O.H., Abu El-Ella A.A. (2012). Effect of supplementing lactating goats rations with garlic, cinnamon or ginger oils on milk yield, milk composition and milk fatty acids profile. J. Life Sci., 4: 27–34.]Search in Google Scholar
[Kholif A.E., Matloup O.H., Morsy T.A., Abdo M.M., Abu Elella A.A., Anele U.Y., Swanson K.C. (2017). Rosemary and lemongrass herbs as phytogenic feed additives to improve efficient feed utilization, manipulate rumen fermentation and elevate milk production of Damascus goats. Livest. Sci., 204: 39–46.]Search in Google Scholar
[Kholif A.E., Kassab A.Y., Azzaz H.H., Matloup O.H., Hamdon H.A., Olafadehan O.A., Morsy T.A. (2018). Essential oils blend with a newly developed enzyme cocktail works synergistically to enhance feed utilization and milk production of Farafra ewes in the subtropics. Small Rumin. Res., 161: 43–50.]Search in Google Scholar
[Kholif A.E., Elazab M.A., Matloup O.H., Olafadehan O.A., Sallam S.M.A. (2021). Crude coriander oil in the diet of lactating goats enhanced lactational performance, ruminal fermentation, apparent nutrient digestibility, and blood chemistry. Small Rumin. Res., 204: 106522.]Search in Google Scholar
[Kung L., Williams P., Schmidt R.J., Hu W. (2008). A blend of essential plant oils used as an additive to alter silage fermentation or used as a feed additive for lactating dairy cows. J. Dairy Sci., 91: 4793–4800.]Search in Google Scholar
[Malekkhahi M., Tahmasbi A.M., Naserian A.A., Danesh Mesgaran M., Kleen J.L., Parand A.A. (2015). Effects of essential oils, yeast culture and malate on rumen fermentation, blood metabolites, growth performance and nutrient digestibility of Baluchi lambs fed high-concentrate diets. J. Anim. Physiol. Anim. Nutr. (Berl.), 99: 221–229.]Search in Google Scholar
[Matloup O.H., Abd El Tawab A.M., Hassan A.A., Hadhoud F.I., Khattab M.S.A., Khalel M.S., Sallam S.M.A., Kholif A.E. (2017). Performance of lactating Friesian cows fed a diet supplemented with coriander oil: Feed intake, nutrient digestibility, ruminal fermentation, blood chemistry, and milk production. Anim. Feed Sci. Technol., 226: 88–97.]Search in Google Scholar
[McIntosh F.M., Williams P., Losa R., Wallace R.J., Beever D.A., Newbold C.J. (2003). Effects of essential oils on ruminal microorganisms and their protein metabolism. Appl. Environ. Microbiol., 69: 5011–5014.]Search in Google Scholar
[NRC (2001). Nutrient Requirements of Dairy Cattle. Washington, D.C., National Academies Press.]Search in Google Scholar
[Ohene-Adjei S., Chaves A. V., McAllister T.A., Benchaar C., Teather R.M., Forster R.J. (2008). Evidence of increased diversity of methanogenic archaea with plant extract supplementation. Microb. Ecol., 56: 234–242.]Search in Google Scholar
[Omonijo F.A., Ni L., Gong J., Wang Q., Lahaye L., Yang C. (2018). Essential oils as alternatives to antibiotics in swine production. Anim. Nutr., 4: 126–136.]Search in Google Scholar
[Onodera R., Yamaguchi H., Eguchi C., Kandatsu M. (1977). Limits of survival of the mingled rumen bacteria in the washed cell suspension of rumen ciliate protozoa. Agric. Biol. Chem., 41: 2465–2466.]Search in Google Scholar
[Patra A.K. (2011). Effects of essential oils on rumen fermentation, microbial ecology and Ruminant production. Asian. J. Anim. Vet. Adv., 6: 416–428.]Search in Google Scholar
[Patra A.K., Yu Z. (2012). Effects of essential oils on methane production and fermentation by, and abundance and diversity of, rumen microbial populations. Appl. Environ. Microbiol., 78: 4271–4280.]Search in Google Scholar
[Preston T.R. (1995). Biological and chemical analytical methods. In: Tropical Animal Feeding: A Manual for Research Workers, Rome, FAO, pp. 181–239.]Search in Google Scholar
[Ryle M., Ørskov E.R. (1990). Energy Nutrition in Ruminants. Dordrecht, Springer Netherlands.]Search in Google Scholar
[Sahraei M., Pirmohammadi R., Payvastegan S. (2014). The effect of rosemary (Rosmarinus officinalis L.) essential oil on digestibility, ruminal fermentation and blood metabolites of Ghezel sheep fed barley-based diets. Span. J. Agric. Res., 12: 448–454.]Search in Google Scholar
[Shaukat M.N., Palmeri R., Restuccia C., Parafati L., Fallico B. (2023). Glycerol ginger extract addition to edible coating formulation for preventing oxidation and fungal spoilage of stored walnuts. Food. Biosci., 52: 102420.]Search in Google Scholar
[Smeti S., Joy M., Hajji H., Alabart J.L., Muñoz F., Mahouachi M., Atti N. (2015). Effects of Rosmarinus officinalis L. essential oils supplementation on digestion, colostrum production of dairy ewes and lamb mortality and growth. Anim. Sci. J., 86: 679–688.]Search in Google Scholar
[Spanghero M., Robinson P.H., Zanfi C., Fabbro E. (2009). Effect of increasing doses of a microencapsulated blend of essential oils on performance of lactating primiparous dairy cows. Anim. Feed Sci. Technol., 153: 153–157.]Search in Google Scholar
[Stevanovic S., Helman S.R., Wunderlich J.R., Langhan M.M., Doran S.L., Kwong M.L.M., Somerville R.P.T., Klebanoff C.A., Kammula U.S., Sherry R.M., Yang J.C., Rosenberg S.A., Hinrichs C.S. (2019). A Phase II study of tumor-infiltrating lymphocyte therapy for human papillomavirus-associated epithelial cancers. Clin. Cancer Res., 25: 1486–1493.]Search in Google Scholar
[Suksombat W., Nanon A., Meeprom C., Lounglawan P. (2017). Feed degradability, rumen fermentation and blood metabolites in response to essential oil addition to fistulated non-lactating dairy cow diets. Anim. Sci. J., 88: 1346–1351.]Search in Google Scholar
[Tager L.R., Krause K.M. (2011). Effects of essential oils on rumen fermentation, milk production, and feeding behavior in lactating dairy cows. J. Dairy Sci., 94: 2455–2464.]Search in Google Scholar
[Tassoul M.D., Shaver R.D. (2009). Effect of a mixture of supplemental dietary plant essential oils on performance of periparturient and early lactation dairy cows. J. Dairy Sci., 92: 1734–1740.]Search in Google Scholar
[Tatsadjieu N.L., Dongmo P.M.J., Ngassoum M.B., Etoa F.X., Mbofung C.M.F. (2009). Investigations on the essential oil of Lippia rugosa from Cameroon for its potential use as antifungal agent against Aspergillus flavus Link ex. Fries. Food Control, 20: 161–166.]Search in Google Scholar
[Tomkins N.W., Denman S.E., Pilajun R., Wanapat M., McSweeney C.S., Elliott R. (2015). Manipulating rumen fermentation and methanogenesis using an essential oil and monensin in beef cattle fed a tropical grass hay. Anim. Feed Sci. Technol., 200: 25–34.]Search in Google Scholar
[Van Soest P.J. (1994). Nutritional ecology of the ruminant. Ithaca, NY, USA., Cornell University Press.]Search in Google Scholar
[Van Soest P.J., Robertson J.B., Lewis B.A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci., 74: 3583–3597.]Search in Google Scholar
[Wang C.J., Wang S.P., Zhou H. (2009). Influences of flavomycin, ropadiar, and saponin on nutrient digestibility, rumen fermentation, and methane emission from sheep. Anim. Feed Sci. Technol., 148: 157–166.]Search in Google Scholar
[Wolin M.J. (1960). A theoretical rumen fermentation balance. J. Dairy Sci., 43: 1452–1459.]Search in Google Scholar
[Yang W.Z., Ametaj B.N., Benchaar C., He M.L., Beauchemin K.A. (2010). Cinnamaldehyde in feedlot cattle diets: Intake, growth performance, carcass characteristics, and blood metabolites. J. Anim. Sci., 88: 1082–1092.]Search in Google Scholar
[Yang W.Z., He M.L. (2016). Effects of feeding garlic and juniper berry essential oils on milk fatty acid composition of dairy cows. Nutr. Metab. Insights, 9: NMI.S33395.]Search in Google Scholar
[Zhang B., Liu Y., Wang H., Liu W., Cheong K., Teng B. (2021). Effect of sodium alginate-agar coating containing ginger essential oil on the shelf life and quality of beef. Food Control, 130: 108216.]Search in Google Scholar