Otwarty dostęp

Effects of Fishmeal Replacement with Spirulina (Arthrospira platensis) and Sargassum ilicifolium Meal on Growth and Health Indices of Asian Seabass (Lates calcarifer) Juveniles

, , ,  oraz   
24 kwi 2025

Zacytuj
Pobierz okładkę

Abdel-Tawwab M., Ahmad M. (2009). Live spirulina (Arthrospira platensis) as a growth and immunity promoter for Nile tilapia, Oreochromis niloticus (L.), challenged with pathogenic Aeromonas hydrophila. Aqua. Res., 40: 1037–1046.Search in Google Scholar

Adel M., Yeganeh S., Dadar M., Sakai M., Dawood M.A.O. (2016). Effects of dietary Spirulina platensis on growth performance, humoral and mucosal immune responses and disease resistance in juvenile great sturgeon (Huso huso Linnaeus, 1754). Fish. Shellfish Immunol., 56: 436–444.Search in Google Scholar

Aebi H. (1984). Catalase in vitro. Methods Enzymol., 272: 121–126.Search in Google Scholar

Alagawany M., Taha A.E., Noreldin A., El-Tarabily K.A., Abd El-Hack M.E. (2021). Nutritional applications of species of Spirulina and Chlorella in farmed fish: A review. Aquaculture, 542: 736841.Search in Google Scholar

Amaro H.M., Rato A., Matias D., Joaquim S., Machado J., Gonçalves J.F.M., Vaz-Pires P., Ozorio R.O.A., Pereira L.F., Azevedo I.C., Sousa-Pinto I., Guedes A.C. (2019). Alga diet formulation – An attempt to reduce oxidative stress during broodstock conditioning of Pacific oysters. Aquaculture, 500: 540–549.Search in Google Scholar

Anand P.S.S., Kohli M.P.S., Sujeet K., Dam Roy S., Sundaray J.K., Kumar S., Sinha A., Pailan G.H., Sukham M.K. (2013). Effect of dietary supplementation of periphyton on growth performance and digestive enzyme activities in Penaeus monodon. Aquaculture, 392–395: 59–68.Search in Google Scholar

Andrews S.R., Sahu N.P., Pal A.K., Mukherjee S.C., Kumar S. (2011). Yeast extract, brewer’s yeast and spirulina in diets for Labeo rohita fingerlings affect haemato-immunological responses and survival following Aeromonas hydrophila challenge. Res. Vet. Sci., 91: 103–109.Search in Google Scholar

Annamalai S.N., Das P., Thaher M.I.A., Abdul Quadir M., Khan S., Mahata C., Jabri H.A. (2021). Nutrients and energy digestibility of microalgal biomass for fish feed applications. Sustainability, 13: 13211.Search in Google Scholar

Association of Official Analytical Chemists (2000). Official Methods of Analysis of AOAC International. Gaithersburg Maryland, USA.Search in Google Scholar

Batista S., Pintado M., Marques A., Abreu H., Silva J.L., Jessen F., Tulli F., Valente L.M.P. (2020 a). Use of technological processing of seaweed and microalgae as strategy to improve their apparent digestibility coefficients in European seabass (Dicentrarchus labrax) juveniles. J. Applied Phycol., 32: 3429–3446.Search in Google Scholar

Batista S., Pereira R., Oliveira B., Baião L.F., Jessen F., Tulli F., Messina M., Silva J.L., Abreu H., Valente L.M.P. (2020 b). Exploring the potential of seaweed Gracilaria gracilis and microalga Nannochloropsis oceanica, single or blended, as natural dietary ingredients for European seabass Dicentrarchus labrax. J. Applied Phycol., 32: 2041–2059.Search in Google Scholar

Belal E., Khalafalla M., El-hais A.M.A. (2012). Use of spirulina (Arthrospira fusiformis) for promoting growth of Nile tilapia finger-lings, Africa. J. Microbiol. Res., 6: 6423–6431.Search in Google Scholar

Bergmeyer H.U. (1974). Methods of enzymatic analysis. Academic Press, Inc, New York, pp. 515–516.Search in Google Scholar

Bernfeld P. (1955). Amylases, alpha and beta. Methods Enzym., 1: 149–158.Search in Google Scholar

Bessey O.A., Lowry O.H., Brock M.J. (1946). Rapid coloric method for determination of alkaline phosphatase in five cubic millimeters of serum. J. Biol. Chem. 164: 321–329.Search in Google Scholar

Beutler E., Duron O., Kelly B.M. (1963). Improved method for the determination of blood glutathione. J. Lab. Clin. Med., 61: 882–890.Search in Google Scholar

Blaxhall P.C., Daisley K.W. (1973). Routine hematological methods for use fish with blood. J. Fish. Biol., 5: 771–781.Search in Google Scholar

Bradford M.M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72: 248–254.Search in Google Scholar

Cao S., Zhang P., Zou T. Fei S., Han D., Jin J., Liu H., Yang Y., Zhu X., Xie S. (2018). Replacement of fishmeal by spirulina Arthrospira platensis affects growth, immune related-gene expression in gibel carp (Carassius auratus gibelio var. CAS III), and its challenge against Aeromonas hydrophila infection. Fish. Shellfish Immunol., 79: 265–273.Search in Google Scholar

Castro I.A., Barroso L.P., Sinnecker P. (2005). Functional foods for coronary heart disease risk reduction: a meta-analysis using a multivariate approach. American J. Clinic. Nutr., 82: 32–40.Search in Google Scholar

Castro-Ruiz D., Mozanzadeh M.T., Fernandez-Mendez C., Andree K.B., García-Dávila C., Cahu C., Gisbert E., Darias M.J. (2019). Ontogeny of the digestive enzyme activity of the Amazonian pimelodid catfish Pseudoplatystoma punctifer (Castelnau, 1855). Aquaculture, 504: 210–218.Search in Google Scholar

Chen F., Leng Y., Lu Q., Zhou W. (2019). The application of microalgae biomass and bio-products as aquafeed for aquaculture. Algal Res., https://doi.org/10.1016/j.algal.2021.102541.Search in Google Scholar

Chen Z., Shen N., Wu X., Jia J., Wu Y., Chiba H., Hui S. (2023). Extraction and quantitation of phytosterols from edible brown seaweeds: optimization, validation, and application. Foods, 12: 244.Search in Google Scholar

Cherry P., O’Hara C., Magee P.J., Mc Sorley E.M., Allsopp P.J. (2019). Risks and benefits of consuming edible seaweeds. Nutr. Rev., 77: 307–329.Search in Google Scholar

Cian R.E., Bacchetta C., Rossi A., Cazenave J., Drago S.R. (2019). Red seaweed Pyropia columbina as antioxidant supplement in feed for cultured juvenile Pacú (Piaractus mesopotamicus). J. Applied Phycol., 31: 1455–1465.Search in Google Scholar

Colla L.M., Muccillo-Baisch A.L., Costa J.A.V. (2008). Spirulina platensis effects on the levels of total cholesterol, HDL and triacylglycerols in rabbits fed with a hypercholesterolemic diet. Brazil. Arch. Biol. Technol., 51: 405–411.Search in Google Scholar

Crane R.K., Boge G., Rigal A. (1979). Isolation of brush border membranes in vesicular form from the intestinal spiral valve of the small dogfish (Scyliorhinus canicula). Biochim. Biophys. Acta, 554: 264–267.Search in Google Scholar

Dacie J.V., Lewis S.M. (2009). Practical Hematology, 9th ed. Churchill Livingstone, London, 2001.Search in Google Scholar

Dvir I., Stark A.H., Chayoth R., Madar Z., Arad S.M. (2009). Hypocholesterolemic effects of nutraceuticals produced from the red microalga Porphyridium sp. in rats. Nutrients, 1: 156–167.Search in Google Scholar

Ellis A.E. (1990). Serum antiproteases in fish and lysozyme assays. In: Techniques in fish immunology, Stolen J.S., Fletcher T.C., Anderson D.P., Roberson B.S., Van Muiswinkel W.B., (eds). SOS Publications, Fair Haven, NJ, pp. 95–103.Search in Google Scholar

Faheem M., Jamal R., Nazeer N., Khaliq S., Hoseinifar S.H., Van Doan H., Paolucci M., (2022). Improving growth, digestive and antioxidant enzymes and immune response of juvenile grass carp (Ctenopharyngodon idella) by using dietary Spirulina platensis. Fishes, 7: 237.Search in Google Scholar

Ferreira M., Teixeira C., Abreu H., Silva J., Costas B., Kiron V., Valente L.M. (2021). Nutritional value, antimicrobial and anti-oxidant activities of micro- and macroalgae, single or blended, unravel their potential use for aquafeeds. J. Applied Phycol., 33: 3507–3518.Search in Google Scholar

Folin O., Ciocalteau V. (1929). Enzymatic assay of protease using casein as a substrate. J. Biol. Chem., 73: 627–650.Search in Google Scholar

Francis G., Makkar H.P.S., Becker K. (2001). Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture, 199: 197–227.Search in Google Scholar

Future Market Insight (2021). Asian sea bass market-analysis, outlook, growth, trends, forecast. Future Market Insight. Available online at: https://www.futuremarketinsights.com/reports/sea-bass-market (accessed January 10, 2022).Search in Google Scholar

Ghanei-Motlagh R., Mohammadian T., Gharibi D. Khosravi M., Mahmoudi E., Zarea M., El-Matbouli M., Menanteau-Ledouble S. (2020). Quorum quenching probiotics modulated digestive enzymes activity, growth performance, gut microflora, haemato-biochemical parameters and resistance against Vibrio harveyi in Asian seabass (Lates calcarifer). Aquaculture, 531: 735874.Search in Google Scholar

Gisbert E., Nolasco H., Solovyev M. (2019). Towards the standardization of brush border purification and intestinal alkaline phosphatase quantification in fish with notes on other digestive enzymes. Aquaculture, 487: 102–108.Search in Google Scholar

Gora A.H., Sahu N.P., Sahoo S., Rehman S., Dar S.A., Agarwal A.I.D. (2018). Effect of dietary Sargassum wightii and its fucoidan-rich extract on growth, immunity, disease resistance and antimicrobial peptide gene expression in Labeo rohita. Inter. Aquac. Res., 10: 115–131.Search in Google Scholar

Hummel B.C. (1959). A modified spectrophotometric determination of chymotrypsin, trypsin, and thrombin. Can. J. Biochem. Physiol., 37: 1393–1399.Search in Google Scholar

Immanuel G., Sivagnanavelmurugan M., Balasubramanian V., Palavesam A. (2012). Sodium alginate from Sargassum wightii retards mortalities in Penaeus monodon postlarvae challenged with white spot syndrome virus. Dis. Aquatic Organ., 99: 187–196.Search in Google Scholar

Kok B., Malcorps W., Tlusty M.F., Eltholth M.M., Auchterlonie N.A., Little D.C., Harmsen R., Newton R.W., Davies S.J. (2020). Fish as feed: Using economic allocation to quantify the Fish In: Fish Out ratio of major fed aquaculture species. Aquaculture, 528: 735474.Search in Google Scholar

Li L., Liu H., Zhang P. (2022). Effect of spirulina meal supplementation on growth performance and feed utilization in fish and shrimp: A meta-analysis. Aquac. Nutr., 8517733.Search in Google Scholar

Ma M., Hu Q. (2023). Microalgae as feed sources and feed additives for sustainable aquaculture: Prospects and challenges. Rev. Aquac., 16: 1–18.Search in Google Scholar

Macias-Sancho J., Poersch L.H., Bauer W., Romano L.A., Wasielesky W., Tesser M.B. (2014). Fishmeal substitution with Arthrospira (Spirulina platensis) in a practical diet for Litopenaeus vannamei: Effects on growth and immunological parameters. Aquaculture, 426–427: 120–125.Search in Google Scholar

Macusi E.D., Cayacay M.A., Borazon E.Q., Sales A.C., Habib A., Fadli N., Santos M.D. (2023). Protein fishmeal replacement in aquaculture: A systematic review and implications on growth and adoption viability. Sustainability, 15: 12500.Search in Google Scholar

Matanjun P., Mohamed S., Muhammad K., Mustapha N.M. (2010). Comparison of cardiovascular protective effects of tropical seaweeds, Kappaphycus alvarezii, Caulerpa lentillifera, and Sargassum polycystum, on high-cholesterol/high-fat diet in rats. J. Med. Food., 13: 792–800.Search in Google Scholar

McCord J.M., Fridovich I. (1969). Superoxide dismutase an enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem., 244: 6049–6055.Search in Google Scholar

Meinita M.D.N., Harwanto D., Tirtawijaya G., Negara B.F.S.P., Sohn J.-H., Kim J.-S., Choi J.-S. (2021). Fucosterol of marine macroalgae: bioactivity, safety, and toxicity on organism. Marine Drugs., 19: 545.Search in Google Scholar

Mohammadiazarm H., Maniat M., Ghorbanijezeh K., Ghotbeddin N. (2021). Effects of spirulina powder (Spirulina platensis) as a dietary additive on Oscar fish, Astronotus ocellatus: assessing growth performance, body composition, digestive enzyme activity, immune-biochemical parameters, blood indices and total pigmentation. Aquac. Nutr., 27: 252–260.Search in Google Scholar

Mohan K., Ravichandran S., Muralisankar T., Uthayakumar V., Chandirasekar R., Seedevi P., Ramu A.G., Rajan D.K. (2019). Application of marine-derived polysaccharides as immunostimulants in aquaculture: A review of current knowledge and further perspectives. Fish. Shellfish Immunol., 86: 1177–1193.Search in Google Scholar

Mohtashemipour H., Mohammadian T., Mozanzadeh M.T., Mesbah M., Jangaran Nejad A. (2024). Dietary selenium nanoparticles improved growth and health indices in Asian seabass (Lates calcarifer) juveniles reared in high saline water. Aquac. Nutr., 7480824.Search in Google Scholar

Moreira A., Cruz S., Marques R., Cartaxana P. (2022). The underexplored potential of green macroalgae in aquaculture. Rev. Aquac., 14: 5–26.Search in Google Scholar

Morshedi V., Nafisi Bahabadi M., Sotoudeh E., Azodi M., Hafezieh M. (2018). Nutritional evaluation of Gracilaria pulvinata as partial substitute with fish meal in practical diets of barramundi (Lates calcarifer). J. App. Phycol., 30: 619–628.Search in Google Scholar

Morshedi V., Gamoori R., Yilmaz S., Hamedi S., Qasemi A. (2024). Evaluation of Sargassum ilicofolium and Padina australis macroalgae dietary supplementation in juvenile Asian bass (Lates calcarifer). J. Applied. Phycol., DOI: 10.1007/s10811-024-03190-5Search in Google Scholar

Mota C.S.C., Pinto O., Sá T., Ferreira M., Delerue-Matos C., Cabrita A.R.J., Almeida A., Abreu H., Silva J., Fonseca A.J.M., Valente L.M.P., Maia M.R.G. (2023). A commercial blend of macroalgae and microalgae promotes digestibility, growth performance, and muscle nutritional value of European seabass (Dicentrarchus labrax L.) juveniles. Front. Nutr., 10: 1165343.Search in Google Scholar

Mozanzadeh M.T., Safari O., Oosooli R., Mehrjooyan S., Najafabadi M.Z., Hoseini S.J., Saghavi H., Monem J. (2021). The effect of salinity on growth performance, digestive and antioxidant enzymes, humoral immunity and stress indices in two euryhaline fish species: yellowfin seabream (Acanthopagrus latus) and Asian seabass (Lates calcarifer). Aquaculture, 534: 736329.Search in Google Scholar

Nagappan S., Das P., AbdulQuadir M., Thaher M., Khan S., Mahata C., Al-Jabri H., Vatland A.K., Kumar G. (2021). Potential of microalgae as a sustainable feed ingredient for aquaculture. J. Biotechnol., 341: 1–20.Search in Google Scholar

Nagarajan D., Varjani S., Lee D-J., Chang J-S. (2021). Sustainable aquaculture and animal feed from microalgae – Nutritive value and techno-functional components. Renew. Sustain. Energy Rev., 150: 111549.Search in Google Scholar

Naylor R.L., Hardy R.W., Buschmann A.H., Bush S.R., Cao L., Klinger D.H., Little D.C., Lubchenco J., Shumway S.E., Troell M., (2021). A 20-year retrospective review of global aquaculture. Nature, 591: 551–563.Search in Google Scholar

Niccolai A., Chini Zittelli G., Rodolfi L., Biondi N., Tredici M.R. (2019). Microalgae of interest as food source: Biochemical composition and digestibility. Algal Res., 42: 101617.Search in Google Scholar

Norambuena F., Hermon K., Skrzypczyk V., Emery J.A., Sharon Y., Beard A., Turchini G.M., (2015). Algae in fish feed: performances and fatty acid metabolism in juvenile Atlantic salmon. PLoS One, 10: e0124042.Search in Google Scholar

Oliveira M.N., Ponte-Freitas A.L., Urano-Carvalho A.F., Taveres-Sampaio T.M., Farias D.F., Alves-Teixera D.I., Gouveia S.T., Gomes-Pereira J., Castro-Catanho de Sena M.M. (2009). Nutritive and non-nutritive attributes of washed-up seaweeds from the coast of Ceara, Brazil. Food Chem., 11: 254–259.Search in Google Scholar

Olvera-Novoa M., Domínguez-Cen L.J., Olivera-Castillo L.A, Martínez-Palacios C. (1998). Effect of the use of the microalga Spirulina maxima as fish meal replacement in diets for tilapia, Oreochromis mossambicus (Peters), fry. Aquac. Res., 29: 709–715.Search in Google Scholar

Øverland M., Mydland L.T., Skrede A. (2019). Marine macroalgae as sources of protein and bioactive compounds in feed for monogastric animals. J. Sci. Food. Agricult., 99: 13–24.Search in Google Scholar

Peixoto M.J., Salas-Leitón E., Pereira L.F., Queiroz A., Magalhães F., Pereira R., Abreu H., Reis P.A., Gonçalves J.F.M., de Ozório R.O.A. (2016). Role of dietary seaweed supplementation on growth performance, digestive capacity and immune and stress responsiveness in European seabass (Dicentrarchus labrax). Aquac. Rep., 3: 189–197.Search in Google Scholar

Prabu D.L., Sahu N.P., Pal A.K., Dasgupta S., Narendra A. (2016). Immunomodulation and interferon gamma gene expression in sutchi cat fish, Pangasianodon hypophthalmus: Effect of dietary fucoidan rich seaweed extract (FRSE) on pre and post challenge period. Aquac. Res., 47: 199–218.Search in Google Scholar

Rahman M., Mamun M.A.A., Rathore S.S., Nandi S.K., Kari Z.A., Wei L.Z., Tahiluddin A.B., Rahman M.M., Manjappa N.K., Hossain A., Nasren S., Alam M.M.M., Bottje W.G., Tellez-Isaías G., Kabir M.A. (2023). Effects of dietary supplementation of natural Spirulina on growth performance, hemato-biochemical indices, gut health, and disease resistance to Aeromonas hydrophila of stinging catfish (Heteropneustes fossilis) fingerling. Aquac. Rep., 32: 101727.Search in Google Scholar

Ren H.T., Zhao X.J., Huang Y., Xiong J.L. (2021). Combined effect of Spirulina and ferrous fumarate on growth parameters, pigmentation, digestive enzyme activity, antioxidant enzyme activity and fatty acids composition of Yellow River carp (Cyprinus carpio). Aquac. Rep., 21: 100776.Search in Google Scholar

Rombenso A., Araujo B., Li E. (2022). Recent advances in fish nutrition: Insights on the nutritional implications of modern formulations. Animals, 12: 1705.Search in Google Scholar

Rosas V.T., Bessonart M., Romano L.A., Tesser T.B. (2019 a). Fish-meal substitution for Arthrospira platensis in juvenile mullet (Mugil liza) and its effects on growth and non-specific immune parameters. Revista Colombiana de Ciencias Pecuarias, 32: 3–13.Search in Google Scholar

Rosas V.T., Monserrat J.M., Bessonart M., Magnone L., Romano L.A., Tesser M.B. (2019 b). Fish oil and meal replacement in mullet (Mugil liza) diet with Spirulina (Arthrospira platensis) and linseed oil. Comp. Biochem. Physiol. Part C: Toxicol. Pharmacol., 218: 46–54.Search in Google Scholar

Saadaoui I., Rasheed R., Aguilar A., Cherif M., Al Jabri H., Sayadi S., Manning S.R. (2021). Microalgal based feed: Promising alternative feedstocks for livestock and poultry production. J. Anim. Sci. Biotech., 12: 76.Search in Google Scholar

Sabzi E., Mohammadiazarm H., Salati A.P. (2023). Synergistic effects of Sargassum vulgare extract and lipid levels on growth performance, blood biochemical indices, immunological competence, and antioxidant capacity in juvenile common carp (Cyprinus carpio). Aquac. Rep., 33: 101829.Search in Google Scholar

Sagaram U.S., Gaikwad M.S., Nandru R., Dasgupta S. (2021). Microalgae as feed ingredients: recent developments on their role in immunomodulation and gut microbiota of aquaculture species. FEMS Microbiol. Let., 368: 71.Search in Google Scholar

Schleder D.D., da Rosa J.R., Guimarães A.M., Ramlov F., Maraschin M., Seiffert W.Q., do Nascimento Vieira F., Hayashi L., Andre-atta E.R. (2017). Brown seaweeds as feed additive for white-leg shrimp: effects on thermal stress resistance, midgut microbiology, and immunology. J. Appl. Phycol., 29: 2471–2477.Search in Google Scholar

Seyedalhosseini H., Salati A.P., Torfi Mozanzadeh M., Parish C.C., Shahriari A. (2023). Effects of dietary seaweeds (Gracilaria spp. and Sargassum spp.) on growth, feed utilization, and resistance to acute hypoxia stress in juvenile Asian seabass (Lates calcarifer). Aquac. Rep., 31: 101663.Search in Google Scholar

Shalata H.A., Bahattab O., Zayed M.M. Farrag F., Salah A.S., Al-Awthan Y.S., Ebied N.A. Mohamed R.A. (2021). Synergistic effects of dietary sodium butyrate and Spirulina platensis on growth performance, carcass composition, blood health, and intestinal histomorphology of Nile tilapia (Oreochromis niloticus). Aquac. Rep., 19: 100637.Search in Google Scholar

Shapawi R., Zamry A.A. (2016). Response of Asian seabass, Lates calcarifer juvenile fed with different seaweed-based diets. J. Applied. Anim. Res., 44: 121–125.Search in Google Scholar

Siddik M.A.B., Vatsos I.N., Rahman M.A., Pham H.D. (2022). Selenium-enriched Spirulina (SeE-SP) enhance antioxidant response, immunity, and disease resistance in juvenile Asian seabass, Lates calcarifer. Antioxidants, 11: 1572.Search in Google Scholar

Siddik M.A.B., Sørensen M., Islam S.M.M., Saha N., Rahman M.A., Francis D.S. (2024). Expanded utilisation of microalgae in global aquafeeds. Rev. Aquac., 16: 6–33.Search in Google Scholar

Siwicki A.K., Anderson D.P., Rumsey G.L. (1994). Dietary intake of immunostimulants by rainbow trout affects non-specific immunity and protection against furunculosis. Vet. Immunol. Immunopathol., 41: 125–139.Search in Google Scholar

Soleimani S., Pirian K., Jeliani Z.Z., Arman M., Yousefzadi M. (2018). Bioactivity assessment of selected seaweeds from the Persian Gulf, Iran. J. Aqua. Ecol., 7: 25–38.Search in Google Scholar

Tietz N.W., Fiereck E.A. (1966). A specific method for serum lipase determination. Clin. Chim. Acta., 13: 352–358.Search in Google Scholar

Turchini G.M, Trushenski J.T., Glencross B.D. (2019). Thoughts for the future of aquaculture nutrition: Realigning perspectives to reflect contemporary issues related to judicious use of marine resources in aquafeeds. North Am. J. Aquac., 81: 13–39.Search in Google Scholar

Valente L.M.P., Cabrita A.R.J., Maia M.R.G., Valente I.M., Engrola S., Fonseca A.J.M., Ribeiro D.M., Lordelo M., Martins C.F., Cunha L.F., Almeida A.M., Freire J.P.B. (2021). Microalgae as feed ingredients for livestock production and aquaculture. In: Microalgae, Galanakis C.M. (ed.). Academic Press, pp. 239–312.Search in Google Scholar

Velasquez S.F., Chan M.A., Abisado R.G., Traifalgar R.F.M., Tayamen M.M., Maliwat G.C.F., Ragaza J.A. (2016). Dietary Spirulina (Arthrospira platensis) replacement enhances performance of juvenile Nile tilapia (Oreochromis niloticus). J. App. Phycol., 28: 1023–1030.Search in Google Scholar

Vijayaram S., Ringø E., Ghafarifarsani H., Hoseinifar S.H., Ahani S., Chou C.-C. (2024). Use of algae in aquaculture: A review. Fishes, 9: 63.Search in Google Scholar

Vizcaíno A.J., Mendes S.I., Varela J.L., Ruiz-Jarabo I., Rico R., Figueroa F.L., Abdala R., Moriñigo M.Á., Mancera J.M., Alarcón F.J. (2016). Growth, tissue metabolites and digestive functionality in Sparus aurata juveniles fed different levels of macroalgae, Gracilaria cornea and Ulva rigida. Aquac. Res., 47: 3224–3238.Search in Google Scholar

Wan A.H.L., Davies S.J., Soler-Vila A., Fitzgerald R., Johnson M.P. (2019). Macroalgae as a sustainable aquafeed ingredient. Rev. Aquac., 11: 458–492.Search in Google Scholar

Wells M.L., Potin P., Craigie J.S., Raven J.A., Merchant S.S., Helli-well K.E., Smith A.G., Camire M.E., Brawley S.H. (2017). Algae as nutritional and functional food sources: revisiting our understanding. J. App. Phycol., 29: 949–82.Search in Google Scholar

Wiegertjes G.F., Stet R.M., Parmentier H.K., van Muiswinkel W.B. (1996). Immunogenetics of disease resistance in fish: A comparative approach. Develop. Comp. Immunol., 20: 365–381.Search in Google Scholar

Wu B., Huang L., Chen J., Zhang Y., Chen X., Wu C., Deng X., Gao J., He J. (2021). Effects of feeding frequency on growth performance, feed intake, metabolism and expression of fgf21 in grass carp (Ctenopharyngodon idellus). Aquaculture, 545: 737196.Search in Google Scholar

Xu Y., Ye J., Zhou D., Su L. (2020). Research progress on applications of calcium derived from marine organisms. Sci. Rep., 10: 18425.Search in Google Scholar

Yeganeh S., Teimouri M., Amirkolaie A.K. (2015). Dietary effects of Spirulina platensis on hematological and serum biochemical parameters of rainbow trout (Oncorhynchus mykiss). Res. Vet. Sci., 101: 84–88.Search in Google Scholar

Yong T.C., Bueno Galaz G., Shapawi R. (2017). Effects of dietary inclusion of Spirulina meal on growth and hematological parameters of cultured Asian sea bass, Lates calcarifer. Borneo J. Marine Sci. Aquacult., 1: 1–6.Search in Google Scholar

Yu W., Wen G., Lin H., Yang Y., Huang X., Zhou C., Zhang Z., Duan Y., Huang Z., Li T. (2018). Effects of dietary Spirulina platensis on growth performance, hematological and serum biochemical parameters, hepatic antioxidant status, immune responses and disease resistance of coral trout Plectropomus leopardus (Lacepede, 1802), Fish Shellfish. Immunol., 74: 649–655.Search in Google Scholar

Zeynali M., Nafisi Bahabadi M., Morshedi V., Ghasemi A., Mozanzadeh M.T. (2020). Replacement of dietary fishmeal with Sargassum ilicifolium meal on growth, innate immunity and immune gene mRNA transcript abundance in Lates calcarifer juveniles. Aquac. Nutr., 26: 1657–1668.Search in Google Scholar

Zhang C. (1994). The effects of polysaccharide and phycocyanin from Spirulina platensis variety on peripheral blood and hematopoietic system of bone marrow in mice. Proc. Second Asia-Pacific Conference on Alga Biotechnology, p. 58.Search in Google Scholar

Zhang F., Man Y.B., Mo W.Y., Wong M.H. (2020). Application of Spirulina in aquaculture: a review on wastewater treatment and fish growth. Rev. Aquac., 12: 582–599.Search in Google Scholar

Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Nauki biologiczne, Biotechnologia, Zoologia, Medycyna, Weterynaria