[Abdel-Tawwab M., Ahmad M. (2009). Live spirulina (Arthrospira platensis) as a growth and immunity promoter for Nile tilapia, Oreochromis niloticus (L.), challenged with pathogenic Aeromonas hydrophila. Aqua. Res., 40: 1037–1046.]Search in Google Scholar
[Adel M., Yeganeh S., Dadar M., Sakai M., Dawood M.A.O. (2016). Effects of dietary Spirulina platensis on growth performance, humoral and mucosal immune responses and disease resistance in juvenile great sturgeon (Huso huso Linnaeus, 1754). Fish. Shellfish Immunol., 56: 436–444.]Search in Google Scholar
[Aebi H. (1984). Catalase in vitro. Methods Enzymol., 272: 121–126.]Search in Google Scholar
[Alagawany M., Taha A.E., Noreldin A., El-Tarabily K.A., Abd El-Hack M.E. (2021). Nutritional applications of species of Spirulina and Chlorella in farmed fish: A review. Aquaculture, 542: 736841.]Search in Google Scholar
[Amaro H.M., Rato A., Matias D., Joaquim S., Machado J., Gonçalves J.F.M., Vaz-Pires P., Ozorio R.O.A., Pereira L.F., Azevedo I.C., Sousa-Pinto I., Guedes A.C. (2019). Alga diet formulation – An attempt to reduce oxidative stress during broodstock conditioning of Pacific oysters. Aquaculture, 500: 540–549.]Search in Google Scholar
[Anand P.S.S., Kohli M.P.S., Sujeet K., Dam Roy S., Sundaray J.K., Kumar S., Sinha A., Pailan G.H., Sukham M.K. (2013). Effect of dietary supplementation of periphyton on growth performance and digestive enzyme activities in Penaeus monodon. Aquaculture, 392–395: 59–68.]Search in Google Scholar
[Andrews S.R., Sahu N.P., Pal A.K., Mukherjee S.C., Kumar S. (2011). Yeast extract, brewer’s yeast and spirulina in diets for Labeo rohita fingerlings affect haemato-immunological responses and survival following Aeromonas hydrophila challenge. Res. Vet. Sci., 91: 103–109.]Search in Google Scholar
[Annamalai S.N., Das P., Thaher M.I.A., Abdul Quadir M., Khan S., Mahata C., Jabri H.A. (2021). Nutrients and energy digestibility of microalgal biomass for fish feed applications. Sustainability, 13: 13211.]Search in Google Scholar
[Association of Official Analytical Chemists (2000). Official Methods of Analysis of AOAC International. Gaithersburg Maryland, USA.]Search in Google Scholar
[Batista S., Pintado M., Marques A., Abreu H., Silva J.L., Jessen F., Tulli F., Valente L.M.P. (2020 a). Use of technological processing of seaweed and microalgae as strategy to improve their apparent digestibility coefficients in European seabass (Dicentrarchus labrax) juveniles. J. Applied Phycol., 32: 3429–3446.]Search in Google Scholar
[Batista S., Pereira R., Oliveira B., Baião L.F., Jessen F., Tulli F., Messina M., Silva J.L., Abreu H., Valente L.M.P. (2020 b). Exploring the potential of seaweed Gracilaria gracilis and microalga Nannochloropsis oceanica, single or blended, as natural dietary ingredients for European seabass Dicentrarchus labrax. J. Applied Phycol., 32: 2041–2059.]Search in Google Scholar
[Belal E., Khalafalla M., El-hais A.M.A. (2012). Use of spirulina (Arthrospira fusiformis) for promoting growth of Nile tilapia finger-lings, Africa. J. Microbiol. Res., 6: 6423–6431.]Search in Google Scholar
[Bergmeyer H.U. (1974). Methods of enzymatic analysis. Academic Press, Inc, New York, pp. 515–516.]Search in Google Scholar
[Bernfeld P. (1955). Amylases, alpha and beta. Methods Enzym., 1: 149–158.]Search in Google Scholar
[Bessey O.A., Lowry O.H., Brock M.J. (1946). Rapid coloric method for determination of alkaline phosphatase in five cubic millimeters of serum. J. Biol. Chem. 164: 321–329.]Search in Google Scholar
[Beutler E., Duron O., Kelly B.M. (1963). Improved method for the determination of blood glutathione. J. Lab. Clin. Med., 61: 882–890.]Search in Google Scholar
[Blaxhall P.C., Daisley K.W. (1973). Routine hematological methods for use fish with blood. J. Fish. Biol., 5: 771–781.]Search in Google Scholar
[Bradford M.M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72: 248–254.]Search in Google Scholar
[Cao S., Zhang P., Zou T. Fei S., Han D., Jin J., Liu H., Yang Y., Zhu X., Xie S. (2018). Replacement of fishmeal by spirulina Arthrospira platensis affects growth, immune related-gene expression in gibel carp (Carassius auratus gibelio var. CAS III), and its challenge against Aeromonas hydrophila infection. Fish. Shellfish Immunol., 79: 265–273.]Search in Google Scholar
[Castro I.A., Barroso L.P., Sinnecker P. (2005). Functional foods for coronary heart disease risk reduction: a meta-analysis using a multivariate approach. American J. Clinic. Nutr., 82: 32–40.]Search in Google Scholar
[Castro-Ruiz D., Mozanzadeh M.T., Fernandez-Mendez C., Andree K.B., García-Dávila C., Cahu C., Gisbert E., Darias M.J. (2019). Ontogeny of the digestive enzyme activity of the Amazonian pimelodid catfish Pseudoplatystoma punctifer (Castelnau, 1855). Aquaculture, 504: 210–218.]Search in Google Scholar
[Chen F., Leng Y., Lu Q., Zhou W. (2019). The application of microalgae biomass and bio-products as aquafeed for aquaculture. Algal Res., https://doi.org/10.1016/j.algal.2021.102541.]Search in Google Scholar
[Chen Z., Shen N., Wu X., Jia J., Wu Y., Chiba H., Hui S. (2023). Extraction and quantitation of phytosterols from edible brown seaweeds: optimization, validation, and application. Foods, 12: 244.]Search in Google Scholar
[Cherry P., O’Hara C., Magee P.J., Mc Sorley E.M., Allsopp P.J. (2019). Risks and benefits of consuming edible seaweeds. Nutr. Rev., 77: 307–329.]Search in Google Scholar
[Cian R.E., Bacchetta C., Rossi A., Cazenave J., Drago S.R. (2019). Red seaweed Pyropia columbina as antioxidant supplement in feed for cultured juvenile Pacú (Piaractus mesopotamicus). J. Applied Phycol., 31: 1455–1465.]Search in Google Scholar
[Colla L.M., Muccillo-Baisch A.L., Costa J.A.V. (2008). Spirulina platensis effects on the levels of total cholesterol, HDL and triacylglycerols in rabbits fed with a hypercholesterolemic diet. Brazil. Arch. Biol. Technol., 51: 405–411.]Search in Google Scholar
[Crane R.K., Boge G., Rigal A. (1979). Isolation of brush border membranes in vesicular form from the intestinal spiral valve of the small dogfish (Scyliorhinus canicula). Biochim. Biophys. Acta, 554: 264–267.]Search in Google Scholar
[Dacie J.V., Lewis S.M. (2009). Practical Hematology, 9th ed. Churchill Livingstone, London, 2001.]Search in Google Scholar
[Dvir I., Stark A.H., Chayoth R., Madar Z., Arad S.M. (2009). Hypocholesterolemic effects of nutraceuticals produced from the red microalga Porphyridium sp. in rats. Nutrients, 1: 156–167.]Search in Google Scholar
[Ellis A.E. (1990). Serum antiproteases in fish and lysozyme assays. In: Techniques in fish immunology, Stolen J.S., Fletcher T.C., Anderson D.P., Roberson B.S., Van Muiswinkel W.B., (eds). SOS Publications, Fair Haven, NJ, pp. 95–103.]Search in Google Scholar
[Faheem M., Jamal R., Nazeer N., Khaliq S., Hoseinifar S.H., Van Doan H., Paolucci M., (2022). Improving growth, digestive and antioxidant enzymes and immune response of juvenile grass carp (Ctenopharyngodon idella) by using dietary Spirulina platensis. Fishes, 7: 237.]Search in Google Scholar
[Ferreira M., Teixeira C., Abreu H., Silva J., Costas B., Kiron V., Valente L.M. (2021). Nutritional value, antimicrobial and anti-oxidant activities of micro- and macroalgae, single or blended, unravel their potential use for aquafeeds. J. Applied Phycol., 33: 3507–3518.]Search in Google Scholar
[Folin O., Ciocalteau V. (1929). Enzymatic assay of protease using casein as a substrate. J. Biol. Chem., 73: 627–650.]Search in Google Scholar
[Francis G., Makkar H.P.S., Becker K. (2001). Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture, 199: 197–227.]Search in Google Scholar
[Future Market Insight (2021). Asian sea bass market-analysis, outlook, growth, trends, forecast. Future Market Insight. Available online at: https://www.futuremarketinsights.com/reports/sea-bass-market (accessed January 10, 2022).]Search in Google Scholar
[Ghanei-Motlagh R., Mohammadian T., Gharibi D. Khosravi M., Mahmoudi E., Zarea M., El-Matbouli M., Menanteau-Ledouble S. (2020). Quorum quenching probiotics modulated digestive enzymes activity, growth performance, gut microflora, haemato-biochemical parameters and resistance against Vibrio harveyi in Asian seabass (Lates calcarifer). Aquaculture, 531: 735874.]Search in Google Scholar
[Gisbert E., Nolasco H., Solovyev M. (2019). Towards the standardization of brush border purification and intestinal alkaline phosphatase quantification in fish with notes on other digestive enzymes. Aquaculture, 487: 102–108.]Search in Google Scholar
[Gora A.H., Sahu N.P., Sahoo S., Rehman S., Dar S.A., Agarwal A.I.D. (2018). Effect of dietary Sargassum wightii and its fucoidan-rich extract on growth, immunity, disease resistance and antimicrobial peptide gene expression in Labeo rohita. Inter. Aquac. Res., 10: 115–131.]Search in Google Scholar
[Hummel B.C. (1959). A modified spectrophotometric determination of chymotrypsin, trypsin, and thrombin. Can. J. Biochem. Physiol., 37: 1393–1399.]Search in Google Scholar
[Immanuel G., Sivagnanavelmurugan M., Balasubramanian V., Palavesam A. (2012). Sodium alginate from Sargassum wightii retards mortalities in Penaeus monodon postlarvae challenged with white spot syndrome virus. Dis. Aquatic Organ., 99: 187–196.]Search in Google Scholar
[Kok B., Malcorps W., Tlusty M.F., Eltholth M.M., Auchterlonie N.A., Little D.C., Harmsen R., Newton R.W., Davies S.J. (2020). Fish as feed: Using economic allocation to quantify the Fish In: Fish Out ratio of major fed aquaculture species. Aquaculture, 528: 735474.]Search in Google Scholar
[Li L., Liu H., Zhang P. (2022). Effect of spirulina meal supplementation on growth performance and feed utilization in fish and shrimp: A meta-analysis. Aquac. Nutr., 8517733.]Search in Google Scholar
[Ma M., Hu Q. (2023). Microalgae as feed sources and feed additives for sustainable aquaculture: Prospects and challenges. Rev. Aquac., 16: 1–18.]Search in Google Scholar
[Macias-Sancho J., Poersch L.H., Bauer W., Romano L.A., Wasielesky W., Tesser M.B. (2014). Fishmeal substitution with Arthrospira (Spirulina platensis) in a practical diet for Litopenaeus vannamei: Effects on growth and immunological parameters. Aquaculture, 426–427: 120–125.]Search in Google Scholar
[Macusi E.D., Cayacay M.A., Borazon E.Q., Sales A.C., Habib A., Fadli N., Santos M.D. (2023). Protein fishmeal replacement in aquaculture: A systematic review and implications on growth and adoption viability. Sustainability, 15: 12500.]Search in Google Scholar
[Matanjun P., Mohamed S., Muhammad K., Mustapha N.M. (2010). Comparison of cardiovascular protective effects of tropical seaweeds, Kappaphycus alvarezii, Caulerpa lentillifera, and Sargassum polycystum, on high-cholesterol/high-fat diet in rats. J. Med. Food., 13: 792–800.]Search in Google Scholar
[McCord J.M., Fridovich I. (1969). Superoxide dismutase an enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem., 244: 6049–6055.]Search in Google Scholar
[Meinita M.D.N., Harwanto D., Tirtawijaya G., Negara B.F.S.P., Sohn J.-H., Kim J.-S., Choi J.-S. (2021). Fucosterol of marine macroalgae: bioactivity, safety, and toxicity on organism. Marine Drugs., 19: 545.]Search in Google Scholar
[Mohammadiazarm H., Maniat M., Ghorbanijezeh K., Ghotbeddin N. (2021). Effects of spirulina powder (Spirulina platensis) as a dietary additive on Oscar fish, Astronotus ocellatus: assessing growth performance, body composition, digestive enzyme activity, immune-biochemical parameters, blood indices and total pigmentation. Aquac. Nutr., 27: 252–260.]Search in Google Scholar
[Mohan K., Ravichandran S., Muralisankar T., Uthayakumar V., Chandirasekar R., Seedevi P., Ramu A.G., Rajan D.K. (2019). Application of marine-derived polysaccharides as immunostimulants in aquaculture: A review of current knowledge and further perspectives. Fish. Shellfish Immunol., 86: 1177–1193.]Search in Google Scholar
[Mohtashemipour H., Mohammadian T., Mozanzadeh M.T., Mesbah M., Jangaran Nejad A. (2024). Dietary selenium nanoparticles improved growth and health indices in Asian seabass (Lates calcarifer) juveniles reared in high saline water. Aquac. Nutr., 7480824.]Search in Google Scholar
[Moreira A., Cruz S., Marques R., Cartaxana P. (2022). The underexplored potential of green macroalgae in aquaculture. Rev. Aquac., 14: 5–26.]Search in Google Scholar
[Morshedi V., Nafisi Bahabadi M., Sotoudeh E., Azodi M., Hafezieh M. (2018). Nutritional evaluation of Gracilaria pulvinata as partial substitute with fish meal in practical diets of barramundi (Lates calcarifer). J. App. Phycol., 30: 619–628.]Search in Google Scholar
[Morshedi V., Gamoori R., Yilmaz S., Hamedi S., Qasemi A. (2024). Evaluation of Sargassum ilicofolium and Padina australis macroalgae dietary supplementation in juvenile Asian bass (Lates calcarifer). J. Applied. Phycol., DOI: 10.1007/s10811-024-03190-5]Search in Google Scholar
[Mota C.S.C., Pinto O., Sá T., Ferreira M., Delerue-Matos C., Cabrita A.R.J., Almeida A., Abreu H., Silva J., Fonseca A.J.M., Valente L.M.P., Maia M.R.G. (2023). A commercial blend of macroalgae and microalgae promotes digestibility, growth performance, and muscle nutritional value of European seabass (Dicentrarchus labrax L.) juveniles. Front. Nutr., 10: 1165343.]Search in Google Scholar
[Mozanzadeh M.T., Safari O., Oosooli R., Mehrjooyan S., Najafabadi M.Z., Hoseini S.J., Saghavi H., Monem J. (2021). The effect of salinity on growth performance, digestive and antioxidant enzymes, humoral immunity and stress indices in two euryhaline fish species: yellowfin seabream (Acanthopagrus latus) and Asian seabass (Lates calcarifer). Aquaculture, 534: 736329.]Search in Google Scholar
[Nagappan S., Das P., AbdulQuadir M., Thaher M., Khan S., Mahata C., Al-Jabri H., Vatland A.K., Kumar G. (2021). Potential of microalgae as a sustainable feed ingredient for aquaculture. J. Biotechnol., 341: 1–20.]Search in Google Scholar
[Nagarajan D., Varjani S., Lee D-J., Chang J-S. (2021). Sustainable aquaculture and animal feed from microalgae – Nutritive value and techno-functional components. Renew. Sustain. Energy Rev., 150: 111549.]Search in Google Scholar
[Naylor R.L., Hardy R.W., Buschmann A.H., Bush S.R., Cao L., Klinger D.H., Little D.C., Lubchenco J., Shumway S.E., Troell M., (2021). A 20-year retrospective review of global aquaculture. Nature, 591: 551–563.]Search in Google Scholar
[Niccolai A., Chini Zittelli G., Rodolfi L., Biondi N., Tredici M.R. (2019). Microalgae of interest as food source: Biochemical composition and digestibility. Algal Res., 42: 101617.]Search in Google Scholar
[Norambuena F., Hermon K., Skrzypczyk V., Emery J.A., Sharon Y., Beard A., Turchini G.M., (2015). Algae in fish feed: performances and fatty acid metabolism in juvenile Atlantic salmon. PLoS One, 10: e0124042.]Search in Google Scholar
[Oliveira M.N., Ponte-Freitas A.L., Urano-Carvalho A.F., Taveres-Sampaio T.M., Farias D.F., Alves-Teixera D.I., Gouveia S.T., Gomes-Pereira J., Castro-Catanho de Sena M.M. (2009). Nutritive and non-nutritive attributes of washed-up seaweeds from the coast of Ceara, Brazil. Food Chem., 11: 254–259.]Search in Google Scholar
[Olvera-Novoa M., Domínguez-Cen L.J., Olivera-Castillo L.A, Martínez-Palacios C. (1998). Effect of the use of the microalga Spirulina maxima as fish meal replacement in diets for tilapia, Oreochromis mossambicus (Peters), fry. Aquac. Res., 29: 709–715.]Search in Google Scholar
[Øverland M., Mydland L.T., Skrede A. (2019). Marine macroalgae as sources of protein and bioactive compounds in feed for monogastric animals. J. Sci. Food. Agricult., 99: 13–24.]Search in Google Scholar
[Peixoto M.J., Salas-Leitón E., Pereira L.F., Queiroz A., Magalhães F., Pereira R., Abreu H., Reis P.A., Gonçalves J.F.M., de Ozório R.O.A. (2016). Role of dietary seaweed supplementation on growth performance, digestive capacity and immune and stress responsiveness in European seabass (Dicentrarchus labrax). Aquac. Rep., 3: 189–197.]Search in Google Scholar
[Prabu D.L., Sahu N.P., Pal A.K., Dasgupta S., Narendra A. (2016). Immunomodulation and interferon gamma gene expression in sutchi cat fish, Pangasianodon hypophthalmus: Effect of dietary fucoidan rich seaweed extract (FRSE) on pre and post challenge period. Aquac. Res., 47: 199–218.]Search in Google Scholar
[Rahman M., Mamun M.A.A., Rathore S.S., Nandi S.K., Kari Z.A., Wei L.Z., Tahiluddin A.B., Rahman M.M., Manjappa N.K., Hossain A., Nasren S., Alam M.M.M., Bottje W.G., Tellez-Isaías G., Kabir M.A. (2023). Effects of dietary supplementation of natural Spirulina on growth performance, hemato-biochemical indices, gut health, and disease resistance to Aeromonas hydrophila of stinging catfish (Heteropneustes fossilis) fingerling. Aquac. Rep., 32: 101727.]Search in Google Scholar
[Ren H.T., Zhao X.J., Huang Y., Xiong J.L. (2021). Combined effect of Spirulina and ferrous fumarate on growth parameters, pigmentation, digestive enzyme activity, antioxidant enzyme activity and fatty acids composition of Yellow River carp (Cyprinus carpio). Aquac. Rep., 21: 100776.]Search in Google Scholar
[Rombenso A., Araujo B., Li E. (2022). Recent advances in fish nutrition: Insights on the nutritional implications of modern formulations. Animals, 12: 1705.]Search in Google Scholar
[Rosas V.T., Bessonart M., Romano L.A., Tesser T.B. (2019 a). Fish-meal substitution for Arthrospira platensis in juvenile mullet (Mugil liza) and its effects on growth and non-specific immune parameters. Revista Colombiana de Ciencias Pecuarias, 32: 3–13.]Search in Google Scholar
[Rosas V.T., Monserrat J.M., Bessonart M., Magnone L., Romano L.A., Tesser M.B. (2019 b). Fish oil and meal replacement in mullet (Mugil liza) diet with Spirulina (Arthrospira platensis) and linseed oil. Comp. Biochem. Physiol. Part C: Toxicol. Pharmacol., 218: 46–54.]Search in Google Scholar
[Saadaoui I., Rasheed R., Aguilar A., Cherif M., Al Jabri H., Sayadi S., Manning S.R. (2021). Microalgal based feed: Promising alternative feedstocks for livestock and poultry production. J. Anim. Sci. Biotech., 12: 76.]Search in Google Scholar
[Sabzi E., Mohammadiazarm H., Salati A.P. (2023). Synergistic effects of Sargassum vulgare extract and lipid levels on growth performance, blood biochemical indices, immunological competence, and antioxidant capacity in juvenile common carp (Cyprinus carpio). Aquac. Rep., 33: 101829.]Search in Google Scholar
[Sagaram U.S., Gaikwad M.S., Nandru R., Dasgupta S. (2021). Microalgae as feed ingredients: recent developments on their role in immunomodulation and gut microbiota of aquaculture species. FEMS Microbiol. Let., 368: 71.]Search in Google Scholar
[Schleder D.D., da Rosa J.R., Guimarães A.M., Ramlov F., Maraschin M., Seiffert W.Q., do Nascimento Vieira F., Hayashi L., Andre-atta E.R. (2017). Brown seaweeds as feed additive for white-leg shrimp: effects on thermal stress resistance, midgut microbiology, and immunology. J. Appl. Phycol., 29: 2471–2477.]Search in Google Scholar
[Seyedalhosseini H., Salati A.P., Torfi Mozanzadeh M., Parish C.C., Shahriari A. (2023). Effects of dietary seaweeds (Gracilaria spp. and Sargassum spp.) on growth, feed utilization, and resistance to acute hypoxia stress in juvenile Asian seabass (Lates calcarifer). Aquac. Rep., 31: 101663.]Search in Google Scholar
[Shalata H.A., Bahattab O., Zayed M.M. Farrag F., Salah A.S., Al-Awthan Y.S., Ebied N.A. Mohamed R.A. (2021). Synergistic effects of dietary sodium butyrate and Spirulina platensis on growth performance, carcass composition, blood health, and intestinal histomorphology of Nile tilapia (Oreochromis niloticus). Aquac. Rep., 19: 100637.]Search in Google Scholar
[Shapawi R., Zamry A.A. (2016). Response of Asian seabass, Lates calcarifer juvenile fed with different seaweed-based diets. J. Applied. Anim. Res., 44: 121–125.]Search in Google Scholar
[Siddik M.A.B., Vatsos I.N., Rahman M.A., Pham H.D. (2022). Selenium-enriched Spirulina (SeE-SP) enhance antioxidant response, immunity, and disease resistance in juvenile Asian seabass, Lates calcarifer. Antioxidants, 11: 1572.]Search in Google Scholar
[Siddik M.A.B., Sørensen M., Islam S.M.M., Saha N., Rahman M.A., Francis D.S. (2024). Expanded utilisation of microalgae in global aquafeeds. Rev. Aquac., 16: 6–33.]Search in Google Scholar
[Siwicki A.K., Anderson D.P., Rumsey G.L. (1994). Dietary intake of immunostimulants by rainbow trout affects non-specific immunity and protection against furunculosis. Vet. Immunol. Immunopathol., 41: 125–139.]Search in Google Scholar
[Soleimani S., Pirian K., Jeliani Z.Z., Arman M., Yousefzadi M. (2018). Bioactivity assessment of selected seaweeds from the Persian Gulf, Iran. J. Aqua. Ecol., 7: 25–38.]Search in Google Scholar
[Tietz N.W., Fiereck E.A. (1966). A specific method for serum lipase determination. Clin. Chim. Acta., 13: 352–358.]Search in Google Scholar
[Turchini G.M, Trushenski J.T., Glencross B.D. (2019). Thoughts for the future of aquaculture nutrition: Realigning perspectives to reflect contemporary issues related to judicious use of marine resources in aquafeeds. North Am. J. Aquac., 81: 13–39.]Search in Google Scholar
[Valente L.M.P., Cabrita A.R.J., Maia M.R.G., Valente I.M., Engrola S., Fonseca A.J.M., Ribeiro D.M., Lordelo M., Martins C.F., Cunha L.F., Almeida A.M., Freire J.P.B. (2021). Microalgae as feed ingredients for livestock production and aquaculture. In: Microalgae, Galanakis C.M. (ed.). Academic Press, pp. 239–312.]Search in Google Scholar
[Velasquez S.F., Chan M.A., Abisado R.G., Traifalgar R.F.M., Tayamen M.M., Maliwat G.C.F., Ragaza J.A. (2016). Dietary Spirulina (Arthrospira platensis) replacement enhances performance of juvenile Nile tilapia (Oreochromis niloticus). J. App. Phycol., 28: 1023–1030.]Search in Google Scholar
[Vijayaram S., Ringø E., Ghafarifarsani H., Hoseinifar S.H., Ahani S., Chou C.-C. (2024). Use of algae in aquaculture: A review. Fishes, 9: 63.]Search in Google Scholar
[Vizcaíno A.J., Mendes S.I., Varela J.L., Ruiz-Jarabo I., Rico R., Figueroa F.L., Abdala R., Moriñigo M.Á., Mancera J.M., Alarcón F.J. (2016). Growth, tissue metabolites and digestive functionality in Sparus aurata juveniles fed different levels of macroalgae, Gracilaria cornea and Ulva rigida. Aquac. Res., 47: 3224–3238.]Search in Google Scholar
[Wan A.H.L., Davies S.J., Soler-Vila A., Fitzgerald R., Johnson M.P. (2019). Macroalgae as a sustainable aquafeed ingredient. Rev. Aquac., 11: 458–492.]Search in Google Scholar
[Wells M.L., Potin P., Craigie J.S., Raven J.A., Merchant S.S., Helli-well K.E., Smith A.G., Camire M.E., Brawley S.H. (2017). Algae as nutritional and functional food sources: revisiting our understanding. J. App. Phycol., 29: 949–82.]Search in Google Scholar
[Wiegertjes G.F., Stet R.M., Parmentier H.K., van Muiswinkel W.B. (1996). Immunogenetics of disease resistance in fish: A comparative approach. Develop. Comp. Immunol., 20: 365–381.]Search in Google Scholar
[Wu B., Huang L., Chen J., Zhang Y., Chen X., Wu C., Deng X., Gao J., He J. (2021). Effects of feeding frequency on growth performance, feed intake, metabolism and expression of fgf21 in grass carp (Ctenopharyngodon idellus). Aquaculture, 545: 737196.]Search in Google Scholar
[Xu Y., Ye J., Zhou D., Su L. (2020). Research progress on applications of calcium derived from marine organisms. Sci. Rep., 10: 18425.]Search in Google Scholar
[Yeganeh S., Teimouri M., Amirkolaie A.K. (2015). Dietary effects of Spirulina platensis on hematological and serum biochemical parameters of rainbow trout (Oncorhynchus mykiss). Res. Vet. Sci., 101: 84–88.]Search in Google Scholar
[Yong T.C., Bueno Galaz G., Shapawi R. (2017). Effects of dietary inclusion of Spirulina meal on growth and hematological parameters of cultured Asian sea bass, Lates calcarifer. Borneo J. Marine Sci. Aquacult., 1: 1–6.]Search in Google Scholar
[Yu W., Wen G., Lin H., Yang Y., Huang X., Zhou C., Zhang Z., Duan Y., Huang Z., Li T. (2018). Effects of dietary Spirulina platensis on growth performance, hematological and serum biochemical parameters, hepatic antioxidant status, immune responses and disease resistance of coral trout Plectropomus leopardus (Lacepede, 1802), Fish Shellfish. Immunol., 74: 649–655.]Search in Google Scholar
[Zeynali M., Nafisi Bahabadi M., Morshedi V., Ghasemi A., Mozanzadeh M.T. (2020). Replacement of dietary fishmeal with Sargassum ilicifolium meal on growth, innate immunity and immune gene mRNA transcript abundance in Lates calcarifer juveniles. Aquac. Nutr., 26: 1657–1668.]Search in Google Scholar
[Zhang C. (1994). The effects of polysaccharide and phycocyanin from Spirulina platensis variety on peripheral blood and hematopoietic system of bone marrow in mice. Proc. Second Asia-Pacific Conference on Alga Biotechnology, p. 58.]Search in Google Scholar
[Zhang F., Man Y.B., Mo W.Y., Wong M.H. (2020). Application of Spirulina in aquaculture: a review on wastewater treatment and fish growth. Rev. Aquac., 12: 582–599.]Search in Google Scholar