Informacje o czasopiśmie
Pierwsze wydanie
25 Nov 2011
Częstotliwość wydawania
4 razy w roku
Otwarty dostęp

Recent advances in in-vitro meat production

Data publikacji: 25 May 2023
Tom & Zeszyt: AHEAD OF PRINT
Zakres stron: -
Otrzymano: 13 Feb 2023
Przyjęty: 08 May 2023
Informacje o czasopiśmie
Pierwsze wydanie
25 Nov 2011
Częstotliwość wydawania
4 razy w roku

Aguanno S., Petrelli C., di Siena S., de Angelis L., Pellegrini M., Naro F. (2019). A three-dimensional culture model of reversibly quiescent myogenic cells. Stem Cells Int., 2019: 1–12. Search in Google Scholar

Akbarzadeh R., Yousefi A.M. (2014). Effects of processing parameters in thermally induced phase separation technique on porous architecture of scaffolds for bone tissue engineering. J. Biomed. Mater. Res. B Appl. Biomaterial, 102: 1304–1315. Search in Google Scholar

al Tanoury Z., Rao J., Tassy O., Gobert B., Gapon S., Garnier J.-M., Wagner E., Hick A., Hall A., Gussoni E. (2020). Differentiation of the human PAX7-positive myogenic precursors/satellite cell lineage in vitro. Development, 147: dev187344. Search in Google Scholar

Allan S., Bank P. de, Ellis M. (2019). Bioprocess design considerations for cultured meat production with a focus on the expansion bioreactor. Front. Sustain. Food Syst., 3:44. Search in Google Scholar

Andreassen R.C., Rønning S.B., Solberg N.T., Grønlien K.G., Kristoffersen K.A., Høst V., Kolset S.O., Pedersen M.E. (2022). Production of food-grade microcarriers based on by-products from the food industry to facilitate the expansion of bovine skeletal muscle satellite cells for cultured meat production. Biomaterials, 286: 121602. Search in Google Scholar

Arshad M.S., Javed M., Sohaib M., Saeed F., Imran A., Amjad Z. (2017). Tissue engineering approaches to develop cultured meat from cells: A mini review. Cogent. Food Agric., 3:1. Search in Google Scholar

Bar-Nur O., Gerli M.F.M., di Stefano B., Almada A.E., Galvin A., Coffey A., Huebner A.J., Feige P., Verheul C., Cheung P., Payzin-Dogru D., Paisant S., Anselmo A., Sadreyev R.I., Ott H.C., Tajbakhsh S., Rudnicki M.A., Wagers A.J., Hochedlinger K. (2018). Direct reprogramming of mouse fibroblasts into functional skeletal muscle progenitors. Stem Cell Rep., 10: 1505–1521. Search in Google Scholar

Bellani C.F., Ajeian J., Duffy L., Miotto M., Groenewegen L., Conno C.J. (2020). Scale-up technologies for the manufacture of adherent cells. Front. Nutr., 7:575146. Search in Google Scholar

Ben-Arye T., Shandalov Y., Ben-Shaul S., Landau S., Zagury Y., Ianovici I., Lavon N., Levenberg, S. (2020). Textured soy protein scaffolds enable the generation of three-dimensional bovine skeletal muscle tissue for cell-based meat. Nat. Food, 1: 210–220. Search in Google Scholar

Ben-Arye T., Shandalov Y., Ben-Shaul S., Landau S., Zagury Y., Ianovici I., Lavon N., Levenberg S. (2020). Textured soy protein scaffolds enable the generation of three-dimensional bovine skeletal muscle tissue for cell-based meat. Nature Food, 1(4): 210–20. Search in Google Scholar

BNC, n.d. What is BNC Scaffold [WWW Document]. 2021. URL https://cassmaterials.com/cellular-agriculture/ (accessed 2.3.23). Search in Google Scholar

Bodiou V., Moutsatsou P., Post M.J. (2020). Microcarriers for upscaling cultured meat production. Front. Nutr., 7:10. Search in Google Scholar

Bogliotti Y.S., Wu J., Vilarino M., Okamura D., Soto D.A., Zhong C., Sakurai M., Sampaio R.V., Suzuki K., Izpisua Belmonte J.C., Ross P.J. (2018). Efficient derivation of stable primed pluripotent embryonic stem cells from bovine blastocysts. Proc. Natl. Acad. Sci., 115: 2090–2095. Search in Google Scholar

Bonab M.M., Alimoghaddam K., Talebian F., Ghaffari S.H., Ghavamzadeh A., Nikbin B. (2006). Aging of mesenchymal stem cell in vitro. BMC Cell Biol., 7: 14. Search in Google Scholar

Browe D., Freeman J. (2019). Optimizing C2C12 myoblast differentiation using polycaprolactone–polypyrrole copolymer scaffolds. J. Biomed Mater Res. A., 107: 220–231. Search in Google Scholar

Brown J.H., Das P., DiVito M.D., Ivancic D., Tan L.P., Wertheim J.A. (2018). Nanofibrous PLGA electrospun scaffolds modified with type I collagen influence hepatocyte function and support viability in vitro. Acta Biomater., 73: 217–227. Search in Google Scholar

Bryant C., Barnett J. (2018). Consumer acceptance of cultured meat: A systematic review. Meat Sci., 143: 8–17 Search in Google Scholar

Bryant C.J., Anderson J.E., Asher K.E., Green C., Gasteratos K. (2019). Strategies for overcoming aversion to unnaturalness: The case of clean meat. Meat Sci., 154: 37-45. Search in Google Scholar

Burrell K., Dardari R., Goldsmith T., Toms D., Villagomez D.A.F., KingW.A., Ungrin M., West F.D., Dobrinski I. (2019). Stirred suspension bioreactor culture of porcine induced pluripotent stem cells. Stem Cells Dev., 28: 1264–1275. Search in Google Scholar

Burton N.M., Vierck J., Krabbenhoft L., Bryne K., Dodson M.V. (2000). Methods for animal satellite cell culture under a variety of conditions. Methods Cell Sci., 22: 51–61. Search in Google Scholar

Campuzano S., Pelling A.E. (2019). Scaffolds for 3D cell culture and cellular agriculture applications derived from non-animal sources. Front. Sustain. Food Syst., 3:38. Search in Google Scholar

CE Delft, (2021). LCA of cultivated meat: Future projections for different scenarios.https://policycommons.net/artifacts/2009833/lca-of-cultivated-meat-future-projections-for-different-scenarios/2762276/fragments/ (accessed 2.3.23) Search in Google Scholar

Chelladurai S.K., Selvan C.J.D., Rajagopalan K., Yesudhason,B.V., Venkatachalam S., Mohan M., Chellathurai V.N., Selvan C.J.R.S. (2021). Alternative to FBS in animal cell culture— An overview and future perspective. Heliyon, 7: e07686. Search in Google Scholar

Chen G., Guo Y., Li C., Li S., Wan X. (2020). Small molecules that promote self-renewal of stem cells and somatic cell reprogramming. Stem Cell Rev. Rep., 16: 511–523. Search in Google Scholar

Chen H., Lui Y.S., Tan Z.W., Lee J.Y.H., Tan N.S., Tan L.P. (2019). Migration and phenotype control of human dermal fibroblasts by electrospun fibrous substrates. Adv Healthcare Mater., 8(9):1801378. Search in Google Scholar

Chen L., Guttieres D., Koenigsberg A., Barone P.W., Sinskey A.J., Springs S.L. (2022). Large-scale cultured meat production: Trends, challenges and promising biomanufacturing technologies. Biomaterials, 280: 121274. Search in Google Scholar

Chen X., Zhou, L. Xu H., Yamamoto M., Shinoda M., Kishimoto M., Tanaka T., Yamane H. (2020). Effect of the application of a dehydrothermal treatment on the structure and the mechanical properties of collagen film. Materials, 13(2): 377. Search in Google Scholar

Choi K.H., Lee D.K., Kim S.W., Woo S.H., Kim D.Y., Lee C.K. (2019). Chemically defined media can maintain pig pluripotency network in vitro. Stem Cell Rep., 13: 221–234. Search in Google Scholar

Choi K.H., Lee D.K., Oh J.N., Kim S.H., Lee M., Woo S.H., Kim D.Y., Lee C.K. (2020). Pluripotent pig embryonic stem cell lines originating from in vitro-fertilized and parthenogenetic embryos. Stem Cell Res., 49: 102093. Search in Google Scholar

Choi K.H., Lee, D. K., Kim, S.W., Woo, S. H., Kim, D. Y., Lee, C. K. (2019). Chemically defined media can maintain pig pluripotency network in vitro. Stem Cell Reports, 13(1): 221–234. Search in Google Scholar

Choi K.H., Yoon J.W., Kim M., Lee H.J., Jeong J., Ryu M., Jo C., Lee C.K. (2021). Muscle stem cell isolation and in vitro culture for meat production: A methodological review. Comp. Rev. Food Sci. Food Saf., 20(1): 429-457. Search in Google Scholar

Choudhury D., Tseng T.W., Swartz E. (2020). The business of cultured meat. Trends Biotechnol., 38: 573–577. Search in Google Scholar

Chriki S., Hocquette J.F. (2020). The myth of cultured meat: A review. Front. Nutr., 7:7. Search in Google Scholar

Das P., DiVito M.D., Wertheim J.A., Tan L.P. (2020). Collagen-I and fibronectin modified three-dimensional electrospun PLGA scaffolds for long-term in vitro maintenance of functional hepatocytes. Mater Sci. Eng. C., 111: 110723. Search in Google Scholar

Derakhti S., Safiabadi-Tali S.H., Amoabediny G., Sheikhpour M. (2019). Attachment and detachment strategies in microcarrier-based cell culture technology: A comprehensive review. Materials Sci. Eng.: C, 103: 109782. Search in Google Scholar

DeZengotita V.M., Kimura R., Miller W.M. (1998). Effects of CO2 and osmolality on hybridoma cells: growth, metabolism and monoclonal antibody production. Cell Culture Eng., 6: 213-227. Search in Google Scholar

Ding S., Swennen G.N.M., Messmer T., Gagliardi M., Molin D.G.M., Li C., Zhou G., Post M.J. (2018). Maintaining bovine satellite cells stemness through p38 pathway. Sci. Rep., 8: 10808. Search in Google Scholar

Ding S., Swennen G.N.M., Messmer T., Gagliardi M., Molin D.G.M., Li C., Post M.J. (2018). Maintaining bovine satellite cells stemness through p38 pathway. Sci Rep., 8(1): 10808. Search in Google Scholar

Djisalov M., Knežić T., Podunavac I., Živojević K., Radonic V., Knežević N.Ž., Bobrinetskiy I., Gadjanski I. (2021). Cultivating multidisciplinarity: Manufacturing and sensing challenges in cultured meat production. Biology (Basel), 10: 204. Search in Google Scholar

Dubey A.K., Lavanya L., Sadananda D., Gouthami K., Elfansu K., Singh A. (2021). Inferences of carbon dioxide in present-day cell culture systems: An unacknowledged problem and perspectives. Austin Therapeutics, 6(1): 1033. Search in Google Scholar

Dupont J., Fiebelkorn F. (2020). Attitudes and acceptance of young people toward the consumption of insects and cultured meat in Germany. Food Qual Prefer., 85: 103983. Search in Google Scholar

Egger D., Tripisciano C., Weber V., Dominici M., Kasper C. (2018). Dynamic cultivation of mesenchymal stem cell aggregates. Bioengineering, 5: 48. Search in Google Scholar

Elmowafy E.M., Tiboni M., Soliman M.E. (2019). Biocompatibility, biodegradation and biomedical applications of poly(lactic acid)/poly(lactic-co-glycolic acid) micro and nanoparticles. J. Pharm Investig., 49: 347–380. Search in Google Scholar

Fang C.Y., Wu C.C., Fang C.L., Chen W.Y., Chen C.L. (2017). Long-term growth comparison studies of FBS and FBS alternatives in six head and neck cell lines. PLoS One, 12: e0178960. Search in Google Scholar

Fish K.D., Rubio N.R., Stout A.J., Yuen J.S.K., Kaplan D.L. (2020). Prospects and challenges for cell-cultured fat as a novel food ingredient. Trends Food Sci. Technol., 98: 53–67. Search in Google Scholar

Furuhashi M., Morimoto Y., Shima A., Nakamura F., Ishikawa H., Takeuchi S. (2021). Formation of contractile 3D bovine muscle tissue for construction of millimetre-thick cultured steak. NPJ Sci. Food, 5: 6(2021). Search in Google Scholar

Gamage D., Thompson M., Sutherland M., Hirotsu N., Makino A., Seneweera S. (2018). New insights into the cellular mechanisms of plant growth at elevated atmospheric carbon dioxide concentrations. Plant Cell Environ., 41(6): 1233-1246. Search in Google Scholar

Garrison G.L., Biermacher J.T., Brorsen B.W. (2022). How much will large-scale production of cell-cultured meat cost? J. Agric. Food Res., 10: 100358. Search in Google Scholar

Genovese N.J., Domeier T.L., Telugu B.P., Roberts R.M. (2017). Enhanced development of skeletal myotubes from porcine induced pluripotent stem cells. Sci Rep., 7: 41833. Search in Google Scholar

George F., Kerschen D., van Nuffel A., Rees J.F., Donnay I. (2009). Plant protein hydrolysates (plant peptones) as substitutes for animal proteins in embryo culture medium. Reprod. Fertil. Dev., 21: 587. Search in Google Scholar

Gerlach J.C., Lin Y.C., Brayfield C.A., Minteer D.M., Li H., Rubin J.P., Marra K.G. (2012). Adipogenesis of human adipose-derived stem cells within three-dimensional hollow fiber-based bioreactors. Tissue Eng. Part C Methods, 18: 54–61. Search in Google Scholar

Ghosal K., Chandra A., Parveen G., Snigdha S., Roy, S., Agatemor C., Thomas S., Provaznik I. (2018). Electrospinning over solvent casting: Tuning of mechanical properties of membranes. Sci. Rep. 8 (1):5058. Search in Google Scholar

Grahl S., Palanisamy M., Strac M., Meier-Dinkel L., Toepfl S., Mörlein D. (2018). Towards more sustainable meat alternatives: How technical parameters affect the sensory properties of extrusion products derived from soy and algae. J. Clean Prod., 198: 962–971. Search in Google Scholar

Guan X., Lei Q., Yan Q., Li X., Zhou J., Du G., Chen J. (2021). Trends and ideas in technology, regulation and public acceptance of cultured meat. Future Foods, 3: 100032. Search in Google Scholar

Guan X., Pan Z., Xu Z., Zhang S., Tang H., Du G., Zhou J. (2022). Natural flavonoid luteolin promotes the differentiation of porcine myoblasts through activation of PI3K/Akt/mTOR signaling. Food Biosci., 47: 101766. Search in Google Scholar

Guénantin A.C., Briand N., Capel E., Dumont F., Morichon R., Provost C., Stillitano F., Jeziorowska D., Siffroi J.-P., Hajjar R.J., Fève B., Hulot J.S., Collas P., Capeau J., Vigouroux C. (2017). Functional human beige adipocytes from induced pluripotent stem cells. Diabetes, 66: 1470–1478. Search in Google Scholar

Guo Y., Ding S.J., Ding X., Liu Z., Wang J.L., Chen Y., Liu P.P., Li H.-X., Zhou G.H., Tang C.B. (2022). Effects of selected flavonoids on cell proliferation and differentiation of porcine muscle stem cells for cultured meat production. Food Res. Int., 160: 111459. Search in Google Scholar

Han X., Han J., Ding F., Cao S., Lim S.S., Dai Y., Zhang R., Zhang Y., Lim B., Li N. (2011). Generation of induced pluripotent stem cells from bovine embryonic fibroblast cells. Cell Res., 21: 1509–1512. Search in Google Scholar

Handral K.H., Hua Tay S., Wan Chan W., Choudhury D. (2022). 3D Printing of cultured meat products. Crit. Rev. Food. Sci. Nutr., 62: 272–281. Search in Google Scholar

Hochedlinger K., Jaenisch R. (2015). Induced pluripotency and epigenetic reprogramming. Cold Spring Harb. Perspect. Biol., 7: a019448. Search in Google Scholar

Hocquette A., Lambert C., Sinquin C., Peterolff L., Wagner Z., Bonny S.P.F., Hocquette J.F. (2015). Educated consumers don’t believe artificial meat is the solution to the problems with the meat industry. J. Integr. Agric., 14: 273–284. Search in Google Scholar

Hocquette É., Liu J., Ellies-Oury M.P., Chriki S., Hocquette J.F. (2022). Does the future of meat in France depend on cultured muscle cells? Answers from different consumer segments. Meat Sci., 188: 108776. Search in Google Scholar

Hu D., Zhao L., Fan L., Liu X., Deng X., Miu S., Ta W. (2017). Effects of yeast extract on cell growth and antibody production in CHO cell culture. Biotechnol. Bull., 33: 162-169. Search in Google Scholar

Hulko M., Dietrich V., Koch I., Gekeler A., Gebert M., Beck W., Krause B. (2019). Pyrogen retention: Comparison of the novel medium cut-off (MCO) membrane with other dialyser membranes. Sci. Rep., 9(1): 6791. Search in Google Scholar

Hur J., Park I., Lim K.M., Doh J., Cho S.G., Chun A.J. (2020). Microfluidic cell stretching for highly effective gene delivery into hard-to-transfect primary cells. ACS Nano., 14: 15094–15106. Search in Google Scholar

Jandyal M., Malav O.P., Chatli M.K., Kumar P., Mehta N. (2021). 3D printing of meat: a new frontier of food from download to delicious: a review. Int. J. Curr. Microbiol. Appl. Sci., 10: 2095-111. Search in Google Scholar

Jiao Y., Li C., Liu L., Wang F., Liu X., Mao J., Wang L. (2020). Construction and application of textile-based tissue engineering scaffolds: a review. Biomater. Sci., 8: 3574–3600. Search in Google Scholar

Jiwlawat N., Lynch E., Jeffrey J., van Dyke J.M., Suzuki M. (2018). Current progress and challenges for skeletal muscle differentiation from human pluripotent stem cells using transgene-free approaches. Stem Cells Int., 2018: 1–18. Search in Google Scholar

Jiwlawat S., Lynch E., Glaser J., Smit-Oistad I., Jeffrey J., van Dyke J.M., Suzuki M. (2017). Differentiation and sarcomere formation in skeletal myocytes directly prepared from human induced pluripotent stem cells using a sphere-based culture. Differentiation, 96: 70–81. Search in Google Scholar

Jo H.Y., Han H.W., Jung I., Ju J.H., Park S.J., Moon S., Geum D., Kim H., Park H.J., Kim S., Stacey G.N., Koo S.K., Park M.H., Kim J.H. (2020). Development of genetic quality tests for good manufacturing practice-compliant induced pluripotent stem cells and their derivatives. Sci. Rep., 10: 3939. Search in Google Scholar

Jo K., Hong K.B., Suh H.J. (2020). Effects of the whey protein hydrolysates of various protein enzymes on the proliferation and differentiation of 3T3-E1 osteoblasts. Prev. Nutr. Food Sci., 25: 71–77. Search in Google Scholar

Jones J.D., Rebello A.S., Gaudette G.R. (2021). Decellularized spinach: An edible scaffold for laboratory-grown meat. Food Biosci., 41: 100986. Search in Google Scholar

Jossen V., Schirmer C., Mostafa Sindi D., Eibl R., Kraume M., Pörtner R., Eib D. (2016). Theoretical and practical issues that are relevant when scaling up hMSC microcarrier production processes. Stem Cells Int., 2016: 1–15. Search in Google Scholar

Kadim I.T., Mahgoub O., Baqir S., Faye B., Purchas R. (2015). Cultured meat from muscle stem cells: A review of challenges and prospects. J. Integr. Agric., 14: 222–233. Search in Google Scholar

Kang D.H., Louis F., Liu H., Shimoda H., Nishiyama Y., Nozawa H., Kakitani M., Takagi D., Kasa D., Nagamori E. (2021). Engineered whole cut meat-like tissue by the assembly of cell fibers using tendon-gel integrated bioprinting. Nat. Commun., 12(1): 5059. Search in Google Scholar

Knežić T., Janjušević L., Djisalov M., Yodmuang, S., Gadjanski, I. (2022). Using vertebrate stem and progenitor cells for cellular agriculture-state-of-the-art, challenges, and future perspectives. Biomolecules, 12 (5): 699. Search in Google Scholar

Kolesky D.B., Homan K.A., Skylar-Scott M.A., Lewis J.A. (2016). Three-dimensional bioprinting of thick vascularized tissues. Proc. Natl. Acad. Sci. USA., 113(12): 3179–3184 Search in Google Scholar

Kolkmann A.M., Post M.J., Rutjens M.A.M., van Essen A.L.M., Moutsatsou P. (2020). Serum-free media for the growth of primary bovine myoblasts. Cytotechnol., 72: 111–120. Search in Google Scholar

Koranne V., Jonas O.L.C., Mitra H., Bapat S., Ardekani A.M., Sealy M.P., Rajurkar K., Malshe A.P. (2022). Exploring properties of edible hydrolyzed collagen for 3D food printing of scaffold for biomanufacturing cultivated meat. Procedia. CIRP., 110: 186–191. Search in Google Scholar

Kowalczyk T., Merecz-Sadowska A., Picot L., Brčić K.I., Wieczfinska J., Śliwiński T., Sitarek P. (2022). Genetic manipulation and bioreactor culture of plants as a tool for industry and its applications. Molecules, 27(3): 795. Search in Google Scholar

Kumar A., Sood A., Han S.S. (2023). Technological and structural aspects of scaffold manufacturing for cultured meat: recent advances, challenges, and opportunities. Crit. Rev. Food Sci. Nutr., 63: 585-612. Search in Google Scholar

Kumar P., Abubakar A.A., Verma A.K., Umaraw P., Nizam M.H., Mehta N., Ahmed M.A., Kaka U., Sazili A.Q. (2022a). New insights in improving sustainability in meat production: opportunities and challenges. Crit. Rev. Food Sci. Nutr., 1-29. Search in Google Scholar

Kumar P., Chatli M.K., Mehta N., Singh P., Malav O.P., Verma A.K. (2017). Meat analogues: Health promising sustainable meat substitutes. Crit. Rev. Food Sci.Nutr., 57: 923-932. Search in Google Scholar

Kumar P., Mehta N., Abubakar A.A., Verma A.K., Kaka U., Sharma N., Sazili A.Q., Pateiro M., Kumar M., Lorenzo J.M. (2022b). Potential alternatives of animal proteins for sustainability in the food sector. Food Rev. Int., 1–26. Search in Google Scholar

Kumar P., Mehta N., Malav O.P., Verma A.K., Umraw P., Kanth M.K. (2019). The structure of meat analogs. Encyclopedia of Food Chem., 105–109. Search in Google Scholar

Kumar P., Sharma N., Ahmed M.A., Verma A.K., Umaraw P., Mehta N., Abubakar A.A., Hayat M.N., Kaka U., Lee S.-J., Sazili A.Q. (2022c). Technological interventions in improving the functionality of proteins during processing of meat analogs. Front. Nutr., 9:1044024. Search in Google Scholar

Kumar P., Sharma N., Sharma S., Mehta N., Verma A.K., Chemmalar S., Sazili A.Q. (2021a). Invitro meat: a promising solution for sustainability of meat sector. J. Anim. Sci. Technol., 63: 693–724. Search in Google Scholar

Kumar P., Verma A.K., Umaraw P., Mehta N., Ranjan R. (2021b). Food utilization to the fullest: the prospects of 3D-printing in the meat industry. Fleischwirtschaft Int: J Meat Product Meat Process., (4): 44-47. Search in Google Scholar

Kuo H.H., Gao X., DeKeyser J.M., Fetterman K.A., Pinheiro E.A., Weddle C.J., Fonoudi H., Orman M.V., Romero-Tejeda M., Jouni M., Blancard M., Magdy T., Epting C.L., George A.L., Burridge P.W. (2020). Negligible-cost and weekend-free chemically defined human iPSC culture. Stem Cell Rep., 14: 256–270. Search in Google Scholar

Langelaan M.L.P., Boonen K.J.M., Polak R.B., Baaijens F.P.T., Post M.J., van der Schaft D.W.J. (2010). Meet the new meat: tissue engineered skeletal muscle. Trends Food Sci. Technol., 21: 59–66. Search in Google Scholar

Leber J., Barekzai J., Blumenstock M., Pospisil B., Salzig D., Czermak P. (2017). Microcarrier choice and bead-to-bead transfer for human mesenchymal stem cells in serum-containing and chemically defined media. Process Biochem., 59: 255–265. Search in Google Scholar

Lee J.K., Link J.M., Hu J.C.Y., Athanasiou, K.A. (2017). The self-assembling process and applications in tissue engineering. Cold Spring Harb. Perspectives in Medicine 7 (11): a025668. Search in Google Scholar

Lee M.S., Youn C., Kim J., Park B., Ahn J., Hong S., Kim Y.D., Shin Y., Park S. (2017). Enhanced cell growth of adipocyte-derived mesenchymal stem cells using chemically-defined serum-free media. Int. J. Mol. Sci., 18: 1779. Search in Google Scholar

Lerman M.J., Lembong J., Muramoto S., Gillen G., Fisher J.P. (2018). The evolution of polystyrene as a cell culture material. Tissue Eng. Part B Rev., 24(5):359–372. Search in Google Scholar

Li B., Wang X., Wang Y., Gou W., Yuan X., Peng J., Guo Q., Lu S. (2015). Past, present, and future of microcarrier-based tissue engineering. J. Orthop. Translat., 3: 51–57. Search in Google Scholar

Li D., Xia Y. (2004). Electrospinning of nanofibers: reinventing the wheel? Adv Mater., 16(14):1151–1170 Search in Google Scholar

Li L., Chen L., Chen X., Chen Y., Ding S., Fan X., Liu Y., Xu X., Zhou G., Zhu B. (2022). Chitosan-sodium alginate-collagen/gelatin three-dimensional edible scaffolds for building a structured model for cell cultured meat. Int. J. Biol. Macromol., 209 (Pt A):668–79. Search in Google Scholar

Li X., Zhang G., Zhao X., Zhou J., Du G., Chen J. (2020). A conceptual air-lift reactor design for large scale animal cell cultivation in the context of in vitro meat production. Chem. Eng. Sci., 211: 115269. Search in Google Scholar

Li Y., Liu W., Li S., Zhang M., Yang F., Wang S. (2021). Porcine skeletal muscle tissue fabrication for cultured meat production using three-dimensional bioprinting technology. J. Future Foods, 1: 88–97. Search in Google Scholar

Liao, P., Chen, X., Wang, M., Bach, T.J., Chye, M.L. (2018). Improved fruit alpha-tocopherol, carotenoid, squalene and phytosterol contents through manipulation of Brassica juncea 3-Hydroxy-3-Methylglutaryl-CoA Synthase1 in transgenic tomato. Plant Biotechnol. J., 16: 784–796. Search in Google Scholar

Lipsitz Y.Y., Woodford C., Yin T., Hanna J.H., Zandstra P.W. (2018). Modulating cell state to enhance suspension expansion of human pluripotent stem cells. Proc. Natl. Acad. Sci., 115: 6369–6374. Search in Google Scholar

Lu H., Ying K., Shi Y., Liu D., Chen Q. (2022). Bioprocessing by decellularized scaffold biomaterials in cultured meat: A review. Bioengineering, 9(12): 787. Search in Google Scholar

Lv Q., Feng Q. (2006). Preparation of 3-D regenerated fibroin scaffolds with freeze drying method and freeze drying/ foaming technique. J. Mater. Sci. Mater. Med., 17(12):1349–1356. Search in Google Scholar

Lynch J., Pierrehumber R. (2019). Climate impacts of cultured meat and beef cattle. Front. Sustain. Food Syst., 3:5. Search in Google Scholar

MacQueen L.A., Alver C.G., Chantre C.O., Ahn S., Cera L., Gonzalez G.M., O’Connor B.B., Drennan D.J., Peters M.M., Motta S.E., Zimmerman J.F., Parker K.K. (2019). Muscle tissue engineering in fibrous gelatin: Implications for meat analogs. NPJ Sci. Food, 3: 20. Search in Google Scholar

Maleiner B., Tomasch J., Heher P., Spadiut O., Rünzler D., Fuchs C. (2018). The importance of biophysical and biochemical stimuli in dynamic skeletal muscle models. Front. Physiol., 9:1130. Search in Google Scholar

Matsumoto K., Kimura S., Itai S., Kondo H., Iwao Y. (2019). In vivo temperature-sensitive drug release system trigged by cooling using low-melting-point microcrystalline wax. J. Control. Release, 303: 281–288. Search in Google Scholar

Matsuura H.N., Malik S., de Costa F., Yousefzadi M., Mirjalili M.H., Arroo R., Bhambra A.S., Strnad M., Bonfill M., Fett-Neto A.G. (2018). Specialized Plant Metabolism Characteristics and Impact on Target Molecule Biotechnological Production. Mol. Biotechnol., 60:169–183. Search in Google Scholar

McKee C., Chaudhry G.R. (2017). Advances and challenges in stem cell culture. Colloids Surf. B Biointerfaces, 159: 62–77. Search in Google Scholar

Melzener L., Verzijden K.E., Buijs A.J., Post M.J., Flack J.E. (2021). Cultured beef: From small biopsy to substantial quantity. J. Sci. Food Agric., 101: 7–14. Search in Google Scholar

Mendibil U., Ruiz-Hernandez R., Retegi-Carrion S., Garcia-Urquia N., Olalde-Graells B., Abarrategi A. (2020). Tissue-specific decellularization methods: Rationale and strategies to achieve regenerative compounds. Int. J. Mol Sci., 21 (15):5447. Search in Google Scholar

Meng J., Yang G., Liu L., Song Y., Jiang L., Wang S. (2017). Cell adhesive spectra along surface wettability gradient from superhydrophilicity to superhydrophobicity. Sci. China Chem., 60: 614–620. Search in Google Scholar

Miotto M., Gouveia R., Abidin F.Z., Figueiredo F., Connon C.J. (2017). Developing a continuous bioprocessing approach to stromal cell manufacture. ACS Appl. Mater. Interfaces, 9: 41131–41142. Search in Google Scholar

Mishra S. (2022). India’s ‘Clear Meat’ Develops Animal-Free Growth Medium That Can Cut Culture Cost by 80% [WWW Document]. The Vegan Indians. URL https://www.theveganindians.com/indias-clear-meat-develops-animal-free-growth-medium-that-can-cut-culture-cost-by-80/ (accessed 1.8.23). Search in Google Scholar

Mo X., Sun B., Wu T., Li D. (2019). Chapter 24 –Electrospun nanofibers for tissue engineering. In Electrospinning: Nanofabrication and applications, eds. B. Ding, X. Wang, and J. Yu, 719–34. Norwich, NY: William Andrew Publishing Search in Google Scholar

Moritz M.S.M., Verbruggen S.E.L., Post M.J. (2015). Alternatives for large-scale production of cultured beef: A review. J.Integr. Agric., 14: 208–216. Search in Google Scholar

Mosa Meat (2021). Growing beef [WWW Document]. URL https://mosameat.com/growing-beef (accessed 2.2.23). Search in Google Scholar

Mridul A. (2021). Cultured meat to hit UK menus by 2023, says cell-based startup Ivy Farm. The Vegan Review. Search in Google Scholar

Nemati, S., Kim, S.J., Shin, Y.M., Hin, H. (2019). Current progress in application of polymeric nanofibers to tissue engineering. Nano Converg., 6 (1):36. Search in Google Scholar

Nonoyama T., Lee Y.W., Ota K., Fujioka K., Hong W., Gong J.P. (2020). Instant thermal switching from soft hydrogel to rigid plastics inspired by thermophile proteins. Adv. Mater., 32 (4):1905878. Search in Google Scholar

Norris S.C.P., Kawecki N.S., Davis A.R., Chen K.K., Rowat A.C. (2022). Emulsion-templated microparticles with tunable stiffness and topology: Applications as edible microcarriers for cultured meat. Biomaterials, 287: 121669. Search in Google Scholar

O’Neill E.N., Cosenza Z.A., Baar K., Block D.E. (2021). Considerations for the development of cost‐effective cell culture media for cultivated meat production. Compr. Rev. Food Sci. Food Saf., 20: 686–709. Search in Google Scholar

Okamoto Y., Haraguchi Y., Sawamura N., Asahi T., Shimizu T. (2020). Mammalian cell cultivation using nutrients extracted from microalgae. Biotechnol. Prog., 36. Search in Google Scholar

Ong S., Loo L., Pang M., Tan R., Teng Y., Lou X., Chin S.K., Naik M.Y., Yu H. (2021). Decompartmentalisation as a simple color manipulation of plant-based marbling meat alternatives. Biomaterials 277:121107. Search in Google Scholar

Orellana N., Sanchez E., Benavente D., Prieto P., Enrione J., Acevedo C.A. (2020). A new edible film to produce in vitro meat. Foods 9 (2):185. Search in Google Scholar

Oryan A., Kamali A., Moshiri A., Baharvand H., Daemi H. (2018). Chemical crosslinking of biopolymeric scaffolds: Current knowledge and future directions of crosslinked engineered bone scaffolds. Int. J. Biol. Macromol., 107: 678–688. Search in Google Scholar

Page H., Flood P., Reynaud E.G. (2013). Three-dimensional tissue cultures: Current trends and beyond. Cell Tissue Res., 352 (1):123–31. Search in Google Scholar

Pakseresht A., Ahmadi Kaliji S., Canavari M. (2022). Review of factors affecting consumer acceptance of cultured meat. Appetite, 170: 105829. Search in Google Scholar

Panchalingam K.M., Jung S., Rosenberg L., Behie L.A. (2015). Bioprocessing strategies for the large-scale production of human mesenchymal stem cells: a review. Stem Cell Res. Ther., 6: 225. Search in Google Scholar

Park S., Jung S., Choi M., Lee M., Choi B., Koh W.-G., Lee S., Hong J. (2021). Gelatin MAGIC powder as nutrient-delivering 3D spacer for growing cell sheets into cost-effective cultured meat. Biomaterials, 278: 121155. Search in Google Scholar

Paul J.P., Mindy D.G., Mary Lynn Tilkins, (1999). Method for expanding embryonic stem cells in serum-free culture. US20020076747A1. Search in Google Scholar

Paul J.Y., Khanna H., Kleidon J., Hoang P., Geijskes J., Daniells J., Zaplin E., Rosenberg Y., James A., Mlalazi B. (2017). Golden bananas in the field: Elevated fruit pro-vitamin A from the expression of a single banana transgene. Plant Biotechnol. J., 15: 520–532. Search in Google Scholar

Peng X., Song T., Hu X., Zhou Y., Wei H., Peng J., Jiang S. (2015). Phenotypic and functional properties of porcine dedifferentiated fat cells during the long-term culture in vitro. Biomed. Res. Int., 2015: 1–10. Search in Google Scholar

Pereira, S.F., Goss, L., Dworkin, J. (2011). Eukaryote-like serine/threonine kinases and phosphatases in bacteria. Microbiol Mol Biol Revi., 75(1): 192-212. Search in Google Scholar

Perez R.A., El-Fiqi A., Park J.H., Kim T.H., Kim J.H., Kim H.W. (2014). Therapeutic bioactive microcarriers: Co-delivery of growth factors and stem cells for bone tissue engineering. Acta Biomater., 10: 520–530. Search in Google Scholar

Pilliar R.M., Filiaggi M.J., Wells J.D., Grynpas M.D., Kandel R.A. (2001). Porous calcium polyphosphate scaffolds for bone substitute applications—In vitro characterization. Biomaterials, 22: 963–972. Search in Google Scholar

Post M. (2014).Cultured beef: Medical technology to produce food. J. Sci. Food Agric., 94: 1039–1041. Search in Google Scholar

Post M.J., Levenberg S., Kaplan D.L., Genovese N., Fu J., Bryant C.J., Negowetti N., Verzijden K., Moutsatsou P. (2020). Scientific, sustainability and regulatory challenges of cultured meat. Nat. Food, 1: 403–415. Search in Google Scholar

Post M.J., Levenberg S., Kaplan D.L., Genovese N., Fu J., Bryant C.J., Negowetti N., Verzijden K., Moutsatsou P. (2020). Scientific, sustainability and regulatory challenges of cultured meat. Nature Food, 1 (7):403–15. Search in Google Scholar

Prasad A., Sankar M.R., Katiyar V. (2017). State of art on solvent casting particulate leaching method for orthopedic scaffolds fabrication. Mater. Today Proc., 4: 898–907. Search in Google Scholar

Raghothaman D., Leong M.F., Lim T.C., Toh J.K., Wan A.C., Yang Z., Lee, E.H. (2014). Engineering cell matrix interactions in assembled polyelectrolyte fiber hydrogels for mesenchymal stem cell chondrogenesis. Biomaterials 35 (9):2607–16. Search in Google Scholar

Rahmati M., Mills D.K., Urbanska A.M., Saeb M.R., Venugopal J.R., Ramakrishna S., Mozafari M. (2021). Electrospinning for tissue engineering applications. Prog Mater Sci., 117:100721. Search in Google Scholar

Ramani S., Ko D., Kim B., Cho C., Kim W., Jo C., Lee C.K., Kang J., Hur S., Park S. (2021). Technical requirements for cultured meat production: a review. J. Anim. Sci. Technol., 63: 681–692. Search in Google Scholar

Reiss J., Robertson S., Suzuki M. (2021). Cell sources for cultivated meat: applications and considerations throughout the production workflow. Int. J. Mol. Sci., 22: 7513. Search in Google Scholar

Rieder E., Kasimir M.T., Silberhumer G., Seebacher G., Wolner E., Simon P., Weigel G. (2004). Decellularization protocols of porcine heart valves differ importantly in efficiency of cell removal and susceptibility of the matrix to recellularization with human vascular cells. J. Thorac. Cardiovasc. Surg., 127 (2):399–405. Search in Google Scholar

Riley M., Vermerris W. (2017). Recent advances in nanomaterials for gene delivery-A review. Nanomaterials, 7: 94. Search in Google Scholar

Rodríguez-Vázquez M., Vega-Ruiz B., Ramos-Zúñiga R., Saldaña-Koppel D.A., Quiñones-Olvera L.F. (2015). Chitosan and its potential use as a scaffold for tissue engineering in regenerative medicine. Biomed. Res. Int., 2015: 1–15. Search in Google Scholar

Rosser J., Thomas-Vazquez, D. (2018). Bioreactor processes for maturation of 3D bioprinted tissue. In 3D Bioprinting for Reconstructive Surgery, 1st ed.; Whitaker, T.J., Ed.; Elsevier Wordmark: Amsterdam, The Netherlands, 2018. Search in Google Scholar

Rubio N.R., Datar I., Stachura D., Kaplan D., Krueger K. (2019a). Cell-based fish: A novel approach to seafood production and an opportunity for cellular agriculture. Front. Sustain. Food Syst., 3. Search in Google Scholar

Rubio N.R., Fish K.D., Trimmer B.A., Kaplan D.L. (2019b). Possibilities for engineered insect tissue as a food source. Front. Sustain. Food. Syst., 3. Search in Google Scholar

Sandmaier S.E.S., Nandal A., Powell A., Garrett W., Blomberg L., Donovan D.M., Talbot N., Telug B.P. (2015). Generation of induced pluripotent stem cells from domestic goats. Mol.Reprod. Dev., 82: 709–721. Search in Google Scholar

Scarfone R.A., Pena S.M., Russell K.A., Betts D.H., Koch T.G. (2020). The use of induced pluripotent stem cells in domestic animals: a narrative review. BMC Vet. Res., 16: 477. Search in Google Scholar

Seah J.S.H., Singh S., Tan L.P., Choudhury D. (2022) Scaffolds for the manufacture of cultured meat, Crit. Rev. Biotechnol., 42:2: 311-323. Search in Google Scholar

Sealy M., Avegnon K., Garrett A., Delbreilh L., Bapat S., Malshe A. (2022). Understanding biomanufacturing of soy-based scaffolds for cell-cultured meat by vat polymerization. CIRP Annals, 71(1): 209–12. Search in Google Scholar

sen Sarkar N., Choudhury S. (2017). Algae as source of natural flavour enhancers - A mini review. Plant Sci. Today, 4: 172–176. Search in Google Scholar

Sharma M., Kaur S., Kumar P., Mehta N., Umaraw P., Ghosh S. (2022). Development, prospects, and challenges of meat analogs with plant-based alternatives, in: Recent Advances in Food Biotechnology. Springer Nature Singapore, Singapore, pp. 275–299. Search in Google Scholar

Siegrist M., Sütterlin B. (2017). Importance of perceived naturalness for acceptance of food additives and cultured meat. Appetite, 113: 320-326. Search in Google Scholar

Siegrist M., Sütterlin B., Hartmann C. (2018). Perceived naturalness and evoked disgust influence acceptance of cultured meat. Meat Sci., 139: 213-219. Search in Google Scholar

Sola A., Bertacchini J., D’Avella D., Anselmi L., Maraldi T., Marmiroli S., Messori M. (2019). Development of solvent-casting particulate leaching (SCPL) polymer scaffolds as improved three-dimensional supports to mimic the bone marrow niche. Mater. Sci. Eng. C, Materials Biol. Applic., 96: 153–65. Search in Google Scholar

Specht E.A., Welch D.R., Rees Clayton E.M., Lagally C.D. (2018). Opportunities for applying biomedical production and manufacturing methods to the development of the clean meat industry. Biochem. Eng. J., 132: 161–168. Search in Google Scholar

Stephens N., Di Silvio L., Dunsford I., Ellis M., Glencross A., Sexton A. (2018). Bringing cultured meat to market: Technical, socio-political, and regulatory challenges in cellular agriculture. Trends Food Sci. Technol., 78:155-166. Search in Google Scholar

Stout A.J., Mirliani A.B., Rittenberg M.L., Shub M., White E.C., Yuen J.S.K., Kaplan D.L. (2022). Simple and effective serum-free medium for sustained expansion of bovine satellite cells for cell cultured meat. Commun. Biol. 5(1): 466. Search in Google Scholar

Tabei Y., Muranaka T. (2020). Preface to the special issue “Technology in tissue culture toward horizon of plant biotechnology”. Plant Biotechnol., 37(2): 117-120. Search in Google Scholar

Takahashi I., Sato K., Mera H., Wakitani S., Takagi M. (2017). Effects of agitation rate on aggregation during beads-to-beads subcultivation of microcarrier culture of human mesenchymal stem cells. Cytotechnol., 69: 503–509. Search in Google Scholar

Takahashi K., Yamanaka S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126: 663–676. Search in Google Scholar

Takahashi K., Yamanaka S. (2016). A decade of transcription factor-mediated reprogramming to pluripotency. Nat. Rev. Mol. Cell. Biol., 17: 183–193. Search in Google Scholar

Tallawi M., Rosellini E., Barbani N., Cascone M.G., Rai R., Saint-Pierre G., Boccaccini A.R. (2015). Strategies for the chemical and biological functionalization of scaffolds for cardiac tissue engineering: a review. J. R. Soc. Interface., 12(108): 20150254–20150254. Search in Google Scholar

Taub D. (2010). Effects of rising atmospheric concentrations of carbon dioxide on plants. Nat. Sci. Edu., 3(10): 21. Search in Google Scholar

Thorrez L., Vandenburgh H. (2019). Challenges in the quest for ‘clean meat.’ Nat. Biotechnol., 37: 215–216. Search in Google Scholar

Trache D., Hussin M.H., Haafiz M.K.M., Thakur V.K. (2017). Recent progress in cellulose nanocrystals: Sources and production. Nanoscale, 9(5): 1763-1786. Search in Google Scholar

Tripathi N.K., Shrivastava A. (2019). Recent developments in bioprocessing of recombinant proteins: Expression hosts and process development. Front. Bioeng. Biotechnol., 7: 420. Search in Google Scholar

Tsai A.C., Liu Y., Yuan X., Chella R., Ma T. (2017). Aggregation kinetics of human mesenchymal stem cells under wave motion. Biotechnol. J., 12: 1600448. Search in Google Scholar

Tuomisto H.L., de Mattos, M.J. (2011). Environmental impacts of cultured meat production. Environ. Sci. Technol., 45: 6117–6123. Search in Google Scholar

Uruakp F. (2015). Influence of cowpea (Vigna unguiculata) peptides on insulin resistance. J. Nutrit. Health Food Sci., 3(2): 1-3. Search in Google Scholar

Verbruggen S., Luinin D., van Essen, A., Post M.J. (2018). Bovine myoblast cell production in a microcarriers-based system. Cytotechnol., 70: 503–512. Search in Google Scholar

Wang W., Zhang T., Wu C., Wang S., Wang Y., Li H., Wang N. (2017). Immortalization of chicken preadipocytes by retroviral transduction of chicken TERT and TR. PLoS One, 12: e0177348. Search in Google Scholar

Warner R.D. (2019). Review: Analysis of the process and drivers for cellular meat production. Animal, 13: 3041–3058. Search in Google Scholar

Werner M., Petersen A., Kurniawan N.A., Bouten C.V.C. (2019). Cell‐perceived substrate curvature dynamically coordinates the direction, speed, and persistence of stromal cell migration. Adv. Biosyst., 3: 1900080. Search in Google Scholar

Wheeler J.A., Hoch G., Cortés A.J., Sedlacek J., Wipf S., Rixen C. (2014). Increased spring freezing vulnerability for alpine shrubs under early snowmelt. Oecologia, 175: 219–229. Search in Google Scholar

Wilks M., Phillips C.J. (2017). Attitudes to in vitro meat: A survey of potential consumers in the United States. PLoS ONE, 12: e0171904. Search in Google Scholar

Willard J.J., Drexler J.W., Das A., Roy S., Shilo S., Shoseyov O., Powell H.M. (2013). Plant-derived human collagen scaffolds for skin tissue engineering. Tissue Eng. Part A, 19: 1507–1518. Search in Google Scholar

Wu Z., Chen J., Ren J., Bao L., Liao J., Cui C., Rao L., Li H., Gu Y., Dai H., Zhu H., Teng X., Cheng L., Xiao L. (2009). Generation of pig induced pluripotent stem cells with a drug-inducible system. J. Mol. Cell Biol., 1: 46–54. Search in Google Scholar

Xu S., Jiang R., Mueller R., Hoesli N., Kretz T., Bowers J., Chen H. (2018). Probing lactate metabolism variations in large-scale bioreactors. Biotechnol. Prog., 34: 756–766. Search in Google Scholar

Xue, X., Hu, Y., Wang, S., Chen, X., Jiang Y., Su, J. (2022). Fabrication of physical and chemical crosslinked hydrogels for bone tissue engineering. Bioact. Mater., 12:327–39. doi: 10.1016/j.bioactmat. 2021.10.029. Search in Google Scholar

Yablonka-Reuveni Z. (2011). The skeletal muscle satellite cell: still young and fascinating at 50. J. Histochem. Cytochem., 59: 1041–1059. Search in Google Scholar

YekrangSafakar A., Hamel K.M., Mehrnezhad A., Jung J.P., Park K. (2020). Development of rolled scaffold for high-density adherent cell culture. Biomed. Microdevices, 22: 4. Search in Google Scholar

Yuen Jr J.S.K., Stout A.J., Kawecki N.S., Letcher S.M., Theodossiou S.K., Cohen J.M., Barrick B.M., Saad M.K., Rubio N.R., Pietropinto J.A., DiCindio H., Zhang S.W., Rowat A.C., Kaplan D.L. (2022). Perspectives on scaling production of adipose tissue for food applications. Biomaterials, 280: 121273. Search in Google Scholar

Zhang C., Wohlhueter R., Zhang H. (2016). Genetically modified foods: A critical review of their promise and problems. Food Sci. Hum. Wellness, 5: 116–123. Search in Google Scholar

Zhang S., Wang H. (2019). Current progress in 3D bioprinting of tissue analogs. SLAS Technol., 24: 70–78. Search in Google Scholar

Zheng Y.Y., Chen Y., Zhu H.Z., Li C.B., Song W.J., Ding S.J., Zhou G.H. (2022). Production of cultured meat by culturing porcine smooth muscle cells in vitro with food grade peanut wire-drawing protein scaffold. Food Res. Int., 159: 111561. Search in Google Scholar

Zheng Y.Y., Zhu H.Z., Wu Z.Y., Song W.J., Tang C.B., Li C.B., Ding S.J., Zhou G.H. (2021). Evaluation of the effect of smooth muscle cells on the quality of cultured meat in a model for cultured meat. Food Res. Int., 150: 110786. Search in Google Scholar

Zhou X.X., Jin, L., Qi R.Q., Ma T. (2018). pH-responsive polymeric micelles self-assembled from amphiphilic copolymer modified with lipid used as doxorubicin delivery carriers. R. Soc. Open Sci., 5: 171654. Search in Google Scholar

Zidarič T., Milojević M., Vajda J., Vihar B., Maver U. (2020). Cultured meat: Meat industry hand in hand with biomedical production methods. Food Eng. Rev., 12: 498–519. Search in Google Scholar

Polecane artykuły z Trend MD