[
Aguanno S., Petrelli C., di Siena S., de Angelis L., Pellegrini M., Naro F. (2019). A three-dimensional culture model of reversibly quiescent myogenic cells. Stem Cells Int., 2019: 1–12.
]Search in Google Scholar
[
Akbarzadeh R., Yousefi A.M. (2014). Effects of processing parameters in thermally induced phase separation technique on porous architecture of scaffolds for bone tissue engineering. J. Biomed. Mater. Res. B Appl. Biomaterial, 102: 1304–1315.
]Search in Google Scholar
[
al Tanoury Z., Rao J., Tassy O., Gobert B., Gapon S., Garnier J.-M., Wagner E., Hick A., Hall A., Gussoni E. (2020). Differentiation of the human PAX7-positive myogenic precursors/satellite cell lineage in vitro. Development, 147: dev187344.
]Search in Google Scholar
[
Allan S., Bank P. de, Ellis M. (2019). Bioprocess design considerations for cultured meat production with a focus on the expansion bioreactor. Front. Sustain. Food Syst., 3:44.
]Search in Google Scholar
[
Andreassen R.C., Rønning S.B., Solberg N.T., Grønlien K.G., Kristoffersen K.A., Høst V., Kolset S.O., Pedersen M.E. (2022). Production of food-grade microcarriers based on by-products from the food industry to facilitate the expansion of bovine skeletal muscle satellite cells for cultured meat production. Biomaterials, 286: 121602.
]Search in Google Scholar
[
Arshad M.S., Javed M., Sohaib M., Saeed F., Imran A., Amjad Z. (2017). Tissue engineering approaches to develop cultured meat from cells: A mini review. Cogent. Food Agric., 3:1.
]Search in Google Scholar
[
Bar-Nur O., Gerli M.F.M., di Stefano B., Almada A.E., Galvin A., Coffey A., Huebner A.J., Feige P., Verheul C., Cheung P., Payzin-Dogru D., Paisant S., Anselmo A., Sadreyev R.I., Ott H.C., Tajbakhsh S., Rudnicki M.A., Wagers A.J., Hochedlinger K. (2018). Direct reprogramming of mouse fibroblasts into functional skeletal muscle progenitors. Stem Cell Rep., 10: 1505–1521.
]Search in Google Scholar
[
Bellani C.F., Ajeian J., Duffy L., Miotto M., Groenewegen L., Conno C.J. (2020). Scale-up technologies for the manufacture of adherent cells. Front. Nutr., 7:575146.
]Search in Google Scholar
[
Ben-Arye T., Shandalov Y., Ben-Shaul S., Landau S., Zagury Y., Ianovici I., Lavon N., Levenberg, S. (2020). Textured soy protein scaffolds enable the generation of three-dimensional bovine skeletal muscle tissue for cell-based meat. Nat. Food, 1: 210–220.
]Search in Google Scholar
[
Ben-Arye T., Shandalov Y., Ben-Shaul S., Landau S., Zagury Y., Ianovici I., Lavon N., Levenberg S. (2020). Textured soy protein scaffolds enable the generation of three-dimensional bovine skeletal muscle tissue for cell-based meat. Nature Food, 1(4): 210–20.
]Search in Google Scholar
[
BNC, n.d. What is BNC Scaffold [WWW Document]. 2021. URL https://cassmaterials.com/cellular-agriculture/ (accessed 2.3.23).
]Search in Google Scholar
[
Bodiou V., Moutsatsou P., Post M.J. (2020). Microcarriers for upscaling cultured meat production. Front. Nutr., 7:10.
]Search in Google Scholar
[
Bogliotti Y.S., Wu J., Vilarino M., Okamura D., Soto D.A., Zhong C., Sakurai M., Sampaio R.V., Suzuki K., Izpisua Belmonte J.C., Ross P.J. (2018). Efficient derivation of stable primed pluripotent embryonic stem cells from bovine blastocysts. Proc. Natl. Acad. Sci., 115: 2090–2095.
]Search in Google Scholar
[
Bonab M.M., Alimoghaddam K., Talebian F., Ghaffari S.H., Ghavamzadeh A., Nikbin B. (2006). Aging of mesenchymal stem cell in vitro. BMC Cell Biol., 7: 14.
]Search in Google Scholar
[
Browe D., Freeman J. (2019). Optimizing C2C12 myoblast differentiation using polycaprolactone–polypyrrole copolymer scaffolds. J. Biomed Mater Res. A., 107: 220–231.
]Search in Google Scholar
[
Brown J.H., Das P., DiVito M.D., Ivancic D., Tan L.P., Wertheim J.A. (2018). Nanofibrous PLGA electrospun scaffolds modified with type I collagen influence hepatocyte function and support viability in vitro. Acta Biomater., 73: 217–227.
]Search in Google Scholar
[
Bryant C., Barnett J. (2018). Consumer acceptance of cultured meat: A systematic review. Meat Sci., 143: 8–17
]Search in Google Scholar
[
Bryant C.J., Anderson J.E., Asher K.E., Green C., Gasteratos K. (2019). Strategies for overcoming aversion to unnaturalness: The case of clean meat. Meat Sci., 154: 37-45.
]Search in Google Scholar
[
Burrell K., Dardari R., Goldsmith T., Toms D., Villagomez D.A.F., KingW.A., Ungrin M., West F.D., Dobrinski I. (2019). Stirred suspension bioreactor culture of porcine induced pluripotent stem cells. Stem Cells Dev., 28: 1264–1275.
]Search in Google Scholar
[
Burton N.M., Vierck J., Krabbenhoft L., Bryne K., Dodson M.V. (2000). Methods for animal satellite cell culture under a variety of conditions. Methods Cell Sci., 22: 51–61.
]Search in Google Scholar
[
Campuzano S., Pelling A.E. (2019). Scaffolds for 3D cell culture and cellular agriculture applications derived from non-animal sources. Front. Sustain. Food Syst., 3:38.
]Search in Google Scholar
[
CE Delft, (2021). LCA of cultivated meat: Future projections for different scenarios.https://policycommons.net/artifacts/2009833/lca-of-cultivated-meat-future-projections-for-different-scenarios/2762276/fragments/ (accessed 2.3.23)
]Search in Google Scholar
[
Chelladurai S.K., Selvan C.J.D., Rajagopalan K., Yesudhason,B.V., Venkatachalam S., Mohan M., Chellathurai V.N., Selvan C.J.R.S. (2021). Alternative to FBS in animal cell culture— An overview and future perspective. Heliyon, 7: e07686.
]Search in Google Scholar
[
Chen G., Guo Y., Li C., Li S., Wan X. (2020). Small molecules that promote self-renewal of stem cells and somatic cell reprogramming. Stem Cell Rev. Rep., 16: 511–523.
]Search in Google Scholar
[
Chen H., Lui Y.S., Tan Z.W., Lee J.Y.H., Tan N.S., Tan L.P. (2019). Migration and phenotype control of human dermal fibroblasts by electrospun fibrous substrates. Adv Healthcare Mater., 8(9):1801378.
]Search in Google Scholar
[
Chen L., Guttieres D., Koenigsberg A., Barone P.W., Sinskey A.J., Springs S.L. (2022). Large-scale cultured meat production: Trends, challenges and promising biomanufacturing technologies. Biomaterials, 280: 121274.
]Search in Google Scholar
[
Chen X., Zhou, L. Xu H., Yamamoto M., Shinoda M., Kishimoto M., Tanaka T., Yamane H. (2020). Effect of the application of a dehydrothermal treatment on the structure and the mechanical properties of collagen film. Materials, 13(2): 377.
]Search in Google Scholar
[
Choi K.H., Lee D.K., Kim S.W., Woo S.H., Kim D.Y., Lee C.K. (2019). Chemically defined media can maintain pig pluripotency network in vitro. Stem Cell Rep., 13: 221–234.
]Search in Google Scholar
[
Choi K.H., Lee D.K., Oh J.N., Kim S.H., Lee M., Woo S.H., Kim D.Y., Lee C.K. (2020). Pluripotent pig embryonic stem cell lines originating from in vitro-fertilized and parthenogenetic embryos. Stem Cell Res., 49: 102093.
]Search in Google Scholar
[
Choi K.H., Lee, D. K., Kim, S.W., Woo, S. H., Kim, D. Y., Lee, C. K. (2019). Chemically defined media can maintain pig pluripotency network in vitro. Stem Cell Reports, 13(1): 221–234.
]Search in Google Scholar
[
Choi K.H., Yoon J.W., Kim M., Lee H.J., Jeong J., Ryu M., Jo C., Lee C.K. (2021). Muscle stem cell isolation and in vitro culture for meat production: A methodological review. Comp. Rev. Food Sci. Food Saf., 20(1): 429-457.
]Search in Google Scholar
[
Choudhury D., Tseng T.W., Swartz E. (2020). The business of cultured meat. Trends Biotechnol., 38: 573–577.
]Search in Google Scholar
[
Chriki S., Hocquette J.F. (2020). The myth of cultured meat: A review. Front. Nutr., 7:7.
]Search in Google Scholar
[
Das P., DiVito M.D., Wertheim J.A., Tan L.P. (2020). Collagen-I and fibronectin modified three-dimensional electrospun PLGA scaffolds for long-term in vitro maintenance of functional hepatocytes. Mater Sci. Eng. C., 111: 110723.
]Search in Google Scholar
[
Derakhti S., Safiabadi-Tali S.H., Amoabediny G., Sheikhpour M. (2019). Attachment and detachment strategies in microcarrier-based cell culture technology: A comprehensive review. Materials Sci. Eng.: C, 103: 109782.
]Search in Google Scholar
[
DeZengotita V.M., Kimura R., Miller W.M. (1998). Effects of CO2 and osmolality on hybridoma cells: growth, metabolism and monoclonal antibody production. Cell Culture Eng., 6: 213-227.
]Search in Google Scholar
[
Ding S., Swennen G.N.M., Messmer T., Gagliardi M., Molin D.G.M., Li C., Zhou G., Post M.J. (2018). Maintaining bovine satellite cells stemness through p38 pathway. Sci. Rep., 8: 10808.
]Search in Google Scholar
[
Ding S., Swennen G.N.M., Messmer T., Gagliardi M., Molin D.G.M., Li C., Post M.J. (2018). Maintaining bovine satellite cells stemness through p38 pathway. Sci Rep., 8(1): 10808.
]Search in Google Scholar
[
Djisalov M., Knežić T., Podunavac I., Živojević K., Radonic V., Knežević N.Ž., Bobrinetskiy I., Gadjanski I. (2021). Cultivating multidisciplinarity: Manufacturing and sensing challenges in cultured meat production. Biology (Basel), 10: 204.
]Search in Google Scholar
[
Dubey A.K., Lavanya L., Sadananda D., Gouthami K., Elfansu K., Singh A. (2021). Inferences of carbon dioxide in present-day cell culture systems: An unacknowledged problem and perspectives. Austin Therapeutics, 6(1): 1033.
]Search in Google Scholar
[
Dupont J., Fiebelkorn F. (2020). Attitudes and acceptance of young people toward the consumption of insects and cultured meat in Germany. Food Qual Prefer., 85: 103983.
]Search in Google Scholar
[
Egger D., Tripisciano C., Weber V., Dominici M., Kasper C. (2018). Dynamic cultivation of mesenchymal stem cell aggregates. Bioengineering, 5: 48.
]Search in Google Scholar
[
Elmowafy E.M., Tiboni M., Soliman M.E. (2019). Biocompatibility, biodegradation and biomedical applications of poly(lactic acid)/poly(lactic-co-glycolic acid) micro and nanoparticles. J. Pharm Investig., 49: 347–380.
]Search in Google Scholar
[
Fang C.Y., Wu C.C., Fang C.L., Chen W.Y., Chen C.L. (2017). Long-term growth comparison studies of FBS and FBS alternatives in six head and neck cell lines. PLoS One, 12: e0178960.
]Search in Google Scholar
[
Fish K.D., Rubio N.R., Stout A.J., Yuen J.S.K., Kaplan D.L. (2020). Prospects and challenges for cell-cultured fat as a novel food ingredient. Trends Food Sci. Technol., 98: 53–67.
]Search in Google Scholar
[
Furuhashi M., Morimoto Y., Shima A., Nakamura F., Ishikawa H., Takeuchi S. (2021). Formation of contractile 3D bovine muscle tissue for construction of millimetre-thick cultured steak. NPJ Sci. Food, 5: 6(2021).
]Search in Google Scholar
[
Gamage D., Thompson M., Sutherland M., Hirotsu N., Makino A., Seneweera S. (2018). New insights into the cellular mechanisms of plant growth at elevated atmospheric carbon dioxide concentrations. Plant Cell Environ., 41(6): 1233-1246.
]Search in Google Scholar
[
Garrison G.L., Biermacher J.T., Brorsen B.W. (2022). How much will large-scale production of cell-cultured meat cost? J. Agric. Food Res., 10: 100358.
]Search in Google Scholar
[
Genovese N.J., Domeier T.L., Telugu B.P., Roberts R.M. (2017). Enhanced development of skeletal myotubes from porcine induced pluripotent stem cells. Sci Rep., 7: 41833.
]Search in Google Scholar
[
George F., Kerschen D., van Nuffel A., Rees J.F., Donnay I. (2009). Plant protein hydrolysates (plant peptones) as substitutes for animal proteins in embryo culture medium. Reprod. Fertil. Dev., 21: 587.
]Search in Google Scholar
[
Gerlach J.C., Lin Y.C., Brayfield C.A., Minteer D.M., Li H., Rubin J.P., Marra K.G. (2012). Adipogenesis of human adipose-derived stem cells within three-dimensional hollow fiber-based bioreactors. Tissue Eng. Part C Methods, 18: 54–61.
]Search in Google Scholar
[
Ghosal K., Chandra A., Parveen G., Snigdha S., Roy, S., Agatemor C., Thomas S., Provaznik I. (2018). Electrospinning over solvent casting: Tuning of mechanical properties of membranes. Sci. Rep. 8 (1):5058.
]Search in Google Scholar
[
Grahl S., Palanisamy M., Strac M., Meier-Dinkel L., Toepfl S., Mörlein D. (2018). Towards more sustainable meat alternatives: How technical parameters affect the sensory properties of extrusion products derived from soy and algae. J. Clean Prod., 198: 962–971.
]Search in Google Scholar
[
Guan X., Lei Q., Yan Q., Li X., Zhou J., Du G., Chen J. (2021). Trends and ideas in technology, regulation and public acceptance of cultured meat. Future Foods, 3: 100032.
]Search in Google Scholar
[
Guan X., Pan Z., Xu Z., Zhang S., Tang H., Du G., Zhou J. (2022). Natural flavonoid luteolin promotes the differentiation of porcine myoblasts through activation of PI3K/Akt/mTOR signaling. Food Biosci., 47: 101766.
]Search in Google Scholar
[
Guénantin A.C., Briand N., Capel E., Dumont F., Morichon R., Provost C., Stillitano F., Jeziorowska D., Siffroi J.-P., Hajjar R.J., Fève B., Hulot J.S., Collas P., Capeau J., Vigouroux C. (2017). Functional human beige adipocytes from induced pluripotent stem cells. Diabetes, 66: 1470–1478.
]Search in Google Scholar
[
Guo Y., Ding S.J., Ding X., Liu Z., Wang J.L., Chen Y., Liu P.P., Li H.-X., Zhou G.H., Tang C.B. (2022). Effects of selected flavonoids on cell proliferation and differentiation of porcine muscle stem cells for cultured meat production. Food Res. Int., 160: 111459.
]Search in Google Scholar
[
Han X., Han J., Ding F., Cao S., Lim S.S., Dai Y., Zhang R., Zhang Y., Lim B., Li N. (2011). Generation of induced pluripotent stem cells from bovine embryonic fibroblast cells. Cell Res., 21: 1509–1512.
]Search in Google Scholar
[
Handral K.H., Hua Tay S., Wan Chan W., Choudhury D. (2022). 3D Printing of cultured meat products. Crit. Rev. Food. Sci. Nutr., 62: 272–281.
]Search in Google Scholar
[
Hochedlinger K., Jaenisch R. (2015). Induced pluripotency and epigenetic reprogramming. Cold Spring Harb. Perspect. Biol., 7: a019448.
]Search in Google Scholar
[
Hocquette A., Lambert C., Sinquin C., Peterolff L., Wagner Z., Bonny S.P.F., Hocquette J.F. (2015). Educated consumers don’t believe artificial meat is the solution to the problems with the meat industry. J. Integr. Agric., 14: 273–284.
]Search in Google Scholar
[
Hocquette É., Liu J., Ellies-Oury M.P., Chriki S., Hocquette J.F. (2022). Does the future of meat in France depend on cultured muscle cells? Answers from different consumer segments. Meat Sci., 188: 108776.
]Search in Google Scholar
[
Hu D., Zhao L., Fan L., Liu X., Deng X., Miu S., Ta W. (2017). Effects of yeast extract on cell growth and antibody production in CHO cell culture. Biotechnol. Bull., 33: 162-169.
]Search in Google Scholar
[
Hulko M., Dietrich V., Koch I., Gekeler A., Gebert M., Beck W., Krause B. (2019). Pyrogen retention: Comparison of the novel medium cut-off (MCO) membrane with other dialyser membranes. Sci. Rep., 9(1): 6791.
]Search in Google Scholar
[
Hur J., Park I., Lim K.M., Doh J., Cho S.G., Chun A.J. (2020). Microfluidic cell stretching for highly effective gene delivery into hard-to-transfect primary cells. ACS Nano., 14: 15094–15106.
]Search in Google Scholar
[
Jandyal M., Malav O.P., Chatli M.K., Kumar P., Mehta N. (2021). 3D printing of meat: a new frontier of food from download to delicious: a review. Int. J. Curr. Microbiol. Appl. Sci., 10: 2095-111.
]Search in Google Scholar
[
Jiao Y., Li C., Liu L., Wang F., Liu X., Mao J., Wang L. (2020). Construction and application of textile-based tissue engineering scaffolds: a review. Biomater. Sci., 8: 3574–3600.
]Search in Google Scholar
[
Jiwlawat N., Lynch E., Jeffrey J., van Dyke J.M., Suzuki M. (2018). Current progress and challenges for skeletal muscle differentiation from human pluripotent stem cells using transgene-free approaches. Stem Cells Int., 2018: 1–18.
]Search in Google Scholar
[
Jiwlawat S., Lynch E., Glaser J., Smit-Oistad I., Jeffrey J., van Dyke J.M., Suzuki M. (2017). Differentiation and sarcomere formation in skeletal myocytes directly prepared from human induced pluripotent stem cells using a sphere-based culture. Differentiation, 96: 70–81.
]Search in Google Scholar
[
Jo H.Y., Han H.W., Jung I., Ju J.H., Park S.J., Moon S., Geum D., Kim H., Park H.J., Kim S., Stacey G.N., Koo S.K., Park M.H., Kim J.H. (2020). Development of genetic quality tests for good manufacturing practice-compliant induced pluripotent stem cells and their derivatives. Sci. Rep., 10: 3939.
]Search in Google Scholar
[
Jo K., Hong K.B., Suh H.J. (2020). Effects of the whey protein hydrolysates of various protein enzymes on the proliferation and differentiation of 3T3-E1 osteoblasts. Prev. Nutr. Food Sci., 25: 71–77.
]Search in Google Scholar
[
Jones J.D., Rebello A.S., Gaudette G.R. (2021). Decellularized spinach: An edible scaffold for laboratory-grown meat. Food Biosci., 41: 100986.
]Search in Google Scholar
[
Jossen V., Schirmer C., Mostafa Sindi D., Eibl R., Kraume M., Pörtner R., Eib D. (2016). Theoretical and practical issues that are relevant when scaling up hMSC microcarrier production processes. Stem Cells Int., 2016: 1–15.
]Search in Google Scholar
[
Kadim I.T., Mahgoub O., Baqir S., Faye B., Purchas R. (2015). Cultured meat from muscle stem cells: A review of challenges and prospects. J. Integr. Agric., 14: 222–233.
]Search in Google Scholar
[
Kang D.H., Louis F., Liu H., Shimoda H., Nishiyama Y., Nozawa H., Kakitani M., Takagi D., Kasa D., Nagamori E. (2021). Engineered whole cut meat-like tissue by the assembly of cell fibers using tendon-gel integrated bioprinting. Nat. Commun., 12(1): 5059.
]Search in Google Scholar
[
Knežić T., Janjušević L., Djisalov M., Yodmuang, S., Gadjanski, I. (2022). Using vertebrate stem and progenitor cells for cellular agriculture-state-of-the-art, challenges, and future perspectives. Biomolecules, 12 (5): 699.
]Search in Google Scholar
[
Kolesky D.B., Homan K.A., Skylar-Scott M.A., Lewis J.A. (2016). Three-dimensional bioprinting of thick vascularized tissues. Proc. Natl. Acad. Sci. USA., 113(12): 3179–3184
]Search in Google Scholar
[
Kolkmann A.M., Post M.J., Rutjens M.A.M., van Essen A.L.M., Moutsatsou P. (2020). Serum-free media for the growth of primary bovine myoblasts. Cytotechnol., 72: 111–120.
]Search in Google Scholar
[
Koranne V., Jonas O.L.C., Mitra H., Bapat S., Ardekani A.M., Sealy M.P., Rajurkar K., Malshe A.P. (2022). Exploring properties of edible hydrolyzed collagen for 3D food printing of scaffold for biomanufacturing cultivated meat. Procedia. CIRP., 110: 186–191.
]Search in Google Scholar
[
Kowalczyk T., Merecz-Sadowska A., Picot L., Brčić K.I., Wieczfinska J., Śliwiński T., Sitarek P. (2022). Genetic manipulation and bioreactor culture of plants as a tool for industry and its applications. Molecules, 27(3): 795.
]Search in Google Scholar
[
Kumar A., Sood A., Han S.S. (2023). Technological and structural aspects of scaffold manufacturing for cultured meat: recent advances, challenges, and opportunities. Crit. Rev. Food Sci. Nutr., 63: 585-612.
]Search in Google Scholar
[
Kumar P., Abubakar A.A., Verma A.K., Umaraw P., Nizam M.H., Mehta N., Ahmed M.A., Kaka U., Sazili A.Q. (2022a). New insights in improving sustainability in meat production: opportunities and challenges. Crit. Rev. Food Sci. Nutr., 1-29.
]Search in Google Scholar
[
Kumar P., Chatli M.K., Mehta N., Singh P., Malav O.P., Verma A.K. (2017). Meat analogues: Health promising sustainable meat substitutes. Crit. Rev. Food Sci.Nutr., 57: 923-932.
]Search in Google Scholar
[
Kumar P., Mehta N., Abubakar A.A., Verma A.K., Kaka U., Sharma N., Sazili A.Q., Pateiro M., Kumar M., Lorenzo J.M. (2022b). Potential alternatives of animal proteins for sustainability in the food sector. Food Rev. Int., 1–26.
]Search in Google Scholar
[
Kumar P., Mehta N., Malav O.P., Verma A.K., Umraw P., Kanth M.K. (2019). The structure of meat analogs. Encyclopedia of Food Chem., 105–109.
]Search in Google Scholar
[
Kumar P., Sharma N., Ahmed M.A., Verma A.K., Umaraw P., Mehta N., Abubakar A.A., Hayat M.N., Kaka U., Lee S.-J., Sazili A.Q. (2022c). Technological interventions in improving the functionality of proteins during processing of meat analogs. Front. Nutr., 9:1044024.
]Search in Google Scholar
[
Kumar P., Sharma N., Sharma S., Mehta N., Verma A.K., Chemmalar S., Sazili A.Q. (2021a). Invitro meat: a promising solution for sustainability of meat sector. J. Anim. Sci. Technol., 63: 693–724.
]Search in Google Scholar
[
Kumar P., Verma A.K., Umaraw P., Mehta N., Ranjan R. (2021b). Food utilization to the fullest: the prospects of 3D-printing in the meat industry. Fleischwirtschaft Int: J Meat Product Meat Process., (4): 44-47.
]Search in Google Scholar
[
Kuo H.H., Gao X., DeKeyser J.M., Fetterman K.A., Pinheiro E.A., Weddle C.J., Fonoudi H., Orman M.V., Romero-Tejeda M., Jouni M., Blancard M., Magdy T., Epting C.L., George A.L., Burridge P.W. (2020). Negligible-cost and weekend-free chemically defined human iPSC culture. Stem Cell Rep., 14: 256–270.
]Search in Google Scholar
[
Langelaan M.L.P., Boonen K.J.M., Polak R.B., Baaijens F.P.T., Post M.J., van der Schaft D.W.J. (2010). Meet the new meat: tissue engineered skeletal muscle. Trends Food Sci. Technol., 21: 59–66.
]Search in Google Scholar
[
Leber J., Barekzai J., Blumenstock M., Pospisil B., Salzig D., Czermak P. (2017). Microcarrier choice and bead-to-bead transfer for human mesenchymal stem cells in serum-containing and chemically defined media. Process Biochem., 59: 255–265.
]Search in Google Scholar
[
Lee J.K., Link J.M., Hu J.C.Y., Athanasiou, K.A. (2017). The self-assembling process and applications in tissue engineering. Cold Spring Harb. Perspectives in Medicine 7 (11): a025668.
]Search in Google Scholar
[
Lee M.S., Youn C., Kim J., Park B., Ahn J., Hong S., Kim Y.D., Shin Y., Park S. (2017). Enhanced cell growth of adipocyte-derived mesenchymal stem cells using chemically-defined serum-free media. Int. J. Mol. Sci., 18: 1779.
]Search in Google Scholar
[
Lerman M.J., Lembong J., Muramoto S., Gillen G., Fisher J.P. (2018). The evolution of polystyrene as a cell culture material. Tissue Eng. Part B Rev., 24(5):359–372.
]Search in Google Scholar
[
Li B., Wang X., Wang Y., Gou W., Yuan X., Peng J., Guo Q., Lu S. (2015). Past, present, and future of microcarrier-based tissue engineering. J. Orthop. Translat., 3: 51–57.
]Search in Google Scholar
[
Li D., Xia Y. (2004). Electrospinning of nanofibers: reinventing the wheel? Adv Mater., 16(14):1151–1170
]Search in Google Scholar
[
Li L., Chen L., Chen X., Chen Y., Ding S., Fan X., Liu Y., Xu X., Zhou G., Zhu B. (2022). Chitosan-sodium alginate-collagen/gelatin three-dimensional edible scaffolds for building a structured model for cell cultured meat. Int. J. Biol. Macromol., 209 (Pt A):668–79.
]Search in Google Scholar
[
Li X., Zhang G., Zhao X., Zhou J., Du G., Chen J. (2020). A conceptual air-lift reactor design for large scale animal cell cultivation in the context of in vitro meat production. Chem. Eng. Sci., 211: 115269.
]Search in Google Scholar
[
Li Y., Liu W., Li S., Zhang M., Yang F., Wang S. (2021). Porcine skeletal muscle tissue fabrication for cultured meat production using three-dimensional bioprinting technology. J. Future Foods, 1: 88–97.
]Search in Google Scholar
[
Liao, P., Chen, X., Wang, M., Bach, T.J., Chye, M.L. (2018). Improved fruit alpha-tocopherol, carotenoid, squalene and phytosterol contents through manipulation of Brassica juncea 3-Hydroxy-3-Methylglutaryl-CoA Synthase1 in transgenic tomato. Plant Biotechnol. J., 16: 784–796.
]Search in Google Scholar
[
Lipsitz Y.Y., Woodford C., Yin T., Hanna J.H., Zandstra P.W. (2018). Modulating cell state to enhance suspension expansion of human pluripotent stem cells. Proc. Natl. Acad. Sci., 115: 6369–6374.
]Search in Google Scholar
[
Lu H., Ying K., Shi Y., Liu D., Chen Q. (2022). Bioprocessing by decellularized scaffold biomaterials in cultured meat: A review. Bioengineering, 9(12): 787.
]Search in Google Scholar
[
Lv Q., Feng Q. (2006). Preparation of 3-D regenerated fibroin scaffolds with freeze drying method and freeze drying/ foaming technique. J. Mater. Sci. Mater. Med., 17(12):1349–1356.
]Search in Google Scholar
[
Lynch J., Pierrehumber R. (2019). Climate impacts of cultured meat and beef cattle. Front. Sustain. Food Syst., 3:5.
]Search in Google Scholar
[
MacQueen L.A., Alver C.G., Chantre C.O., Ahn S., Cera L., Gonzalez G.M., O’Connor B.B., Drennan D.J., Peters M.M., Motta S.E., Zimmerman J.F., Parker K.K. (2019). Muscle tissue engineering in fibrous gelatin: Implications for meat analogs. NPJ Sci. Food, 3: 20.
]Search in Google Scholar
[
Maleiner B., Tomasch J., Heher P., Spadiut O., Rünzler D., Fuchs C. (2018). The importance of biophysical and biochemical stimuli in dynamic skeletal muscle models. Front. Physiol., 9:1130.
]Search in Google Scholar
[
Matsumoto K., Kimura S., Itai S., Kondo H., Iwao Y. (2019). In vivo temperature-sensitive drug release system trigged by cooling using low-melting-point microcrystalline wax. J. Control. Release, 303: 281–288.
]Search in Google Scholar
[
Matsuura H.N., Malik S., de Costa F., Yousefzadi M., Mirjalili M.H., Arroo R., Bhambra A.S., Strnad M., Bonfill M., Fett-Neto A.G. (2018). Specialized Plant Metabolism Characteristics and Impact on Target Molecule Biotechnological Production. Mol. Biotechnol., 60:169–183.
]Search in Google Scholar
[
McKee C., Chaudhry G.R. (2017). Advances and challenges in stem cell culture. Colloids Surf. B Biointerfaces, 159: 62–77.
]Search in Google Scholar
[
Melzener L., Verzijden K.E., Buijs A.J., Post M.J., Flack J.E. (2021). Cultured beef: From small biopsy to substantial quantity. J. Sci. Food Agric., 101: 7–14.
]Search in Google Scholar
[
Mendibil U., Ruiz-Hernandez R., Retegi-Carrion S., Garcia-Urquia N., Olalde-Graells B., Abarrategi A. (2020). Tissue-specific decellularization methods: Rationale and strategies to achieve regenerative compounds. Int. J. Mol Sci., 21 (15):5447.
]Search in Google Scholar
[
Meng J., Yang G., Liu L., Song Y., Jiang L., Wang S. (2017). Cell adhesive spectra along surface wettability gradient from superhydrophilicity to superhydrophobicity. Sci. China Chem., 60: 614–620.
]Search in Google Scholar
[
Miotto M., Gouveia R., Abidin F.Z., Figueiredo F., Connon C.J. (2017). Developing a continuous bioprocessing approach to stromal cell manufacture. ACS Appl. Mater. Interfaces, 9: 41131–41142.
]Search in Google Scholar
[
Mishra S. (2022). India’s ‘Clear Meat’ Develops Animal-Free Growth Medium That Can Cut Culture Cost by 80% [WWW Document]. The Vegan Indians. URL https://www.theveganindians.com/indias-clear-meat-develops-animal-free-growth-medium-that-can-cut-culture-cost-by-80/ (accessed 1.8.23).
]Search in Google Scholar
[
Mo X., Sun B., Wu T., Li D. (2019). Chapter 24 –Electrospun nanofibers for tissue engineering. In Electrospinning: Nanofabrication and applications, eds. B. Ding, X. Wang, and J. Yu, 719–34. Norwich, NY: William Andrew Publishing
]Search in Google Scholar
[
Moritz M.S.M., Verbruggen S.E.L., Post M.J. (2015). Alternatives for large-scale production of cultured beef: A review. J.Integr. Agric., 14: 208–216.
]Search in Google Scholar
[
Mosa Meat (2021). Growing beef [WWW Document]. URL https://mosameat.com/growing-beef (accessed 2.2.23).
]Search in Google Scholar
[
Mridul A. (2021). Cultured meat to hit UK menus by 2023, says cell-based startup Ivy Farm. The Vegan Review.
]Search in Google Scholar
[
Nemati, S., Kim, S.J., Shin, Y.M., Hin, H. (2019). Current progress in application of polymeric nanofibers to tissue engineering. Nano Converg., 6 (1):36.
]Search in Google Scholar
[
Nonoyama T., Lee Y.W., Ota K., Fujioka K., Hong W., Gong J.P. (2020). Instant thermal switching from soft hydrogel to rigid plastics inspired by thermophile proteins. Adv. Mater., 32 (4):1905878.
]Search in Google Scholar
[
Norris S.C.P., Kawecki N.S., Davis A.R., Chen K.K., Rowat A.C. (2022). Emulsion-templated microparticles with tunable stiffness and topology: Applications as edible microcarriers for cultured meat. Biomaterials, 287: 121669.
]Search in Google Scholar
[
O’Neill E.N., Cosenza Z.A., Baar K., Block D.E. (2021). Considerations for the development of cost‐effective cell culture media for cultivated meat production. Compr. Rev. Food Sci. Food Saf., 20: 686–709.
]Search in Google Scholar
[
Okamoto Y., Haraguchi Y., Sawamura N., Asahi T., Shimizu T. (2020). Mammalian cell cultivation using nutrients extracted from microalgae. Biotechnol. Prog., 36.
]Search in Google Scholar
[
Ong S., Loo L., Pang M., Tan R., Teng Y., Lou X., Chin S.K., Naik M.Y., Yu H. (2021). Decompartmentalisation as a simple color manipulation of plant-based marbling meat alternatives. Biomaterials 277:121107.
]Search in Google Scholar
[
Orellana N., Sanchez E., Benavente D., Prieto P., Enrione J., Acevedo C.A. (2020). A new edible film to produce in vitro meat. Foods 9 (2):185.
]Search in Google Scholar
[
Oryan A., Kamali A., Moshiri A., Baharvand H., Daemi H. (2018). Chemical crosslinking of biopolymeric scaffolds: Current knowledge and future directions of crosslinked engineered bone scaffolds. Int. J. Biol. Macromol., 107: 678–688.
]Search in Google Scholar
[
Page H., Flood P., Reynaud E.G. (2013). Three-dimensional tissue cultures: Current trends and beyond. Cell Tissue Res., 352 (1):123–31.
]Search in Google Scholar
[
Pakseresht A., Ahmadi Kaliji S., Canavari M. (2022). Review of factors affecting consumer acceptance of cultured meat. Appetite, 170: 105829.
]Search in Google Scholar
[
Panchalingam K.M., Jung S., Rosenberg L., Behie L.A. (2015). Bioprocessing strategies for the large-scale production of human mesenchymal stem cells: a review. Stem Cell Res. Ther., 6: 225.
]Search in Google Scholar
[
Park S., Jung S., Choi M., Lee M., Choi B., Koh W.-G., Lee S., Hong J. (2021). Gelatin MAGIC powder as nutrient-delivering 3D spacer for growing cell sheets into cost-effective cultured meat. Biomaterials, 278: 121155.
]Search in Google Scholar
[
Paul J.P., Mindy D.G., Mary Lynn Tilkins, (1999). Method for expanding embryonic stem cells in serum-free culture. US20020076747A1.
]Search in Google Scholar
[
Paul J.Y., Khanna H., Kleidon J., Hoang P., Geijskes J., Daniells J., Zaplin E., Rosenberg Y., James A., Mlalazi B. (2017). Golden bananas in the field: Elevated fruit pro-vitamin A from the expression of a single banana transgene. Plant Biotechnol. J., 15: 520–532.
]Search in Google Scholar
[
Peng X., Song T., Hu X., Zhou Y., Wei H., Peng J., Jiang S. (2015). Phenotypic and functional properties of porcine dedifferentiated fat cells during the long-term culture in vitro. Biomed. Res. Int., 2015: 1–10.
]Search in Google Scholar
[
Pereira, S.F., Goss, L., Dworkin, J. (2011). Eukaryote-like serine/threonine kinases and phosphatases in bacteria. Microbiol Mol Biol Revi., 75(1): 192-212.
]Search in Google Scholar
[
Perez R.A., El-Fiqi A., Park J.H., Kim T.H., Kim J.H., Kim H.W. (2014). Therapeutic bioactive microcarriers: Co-delivery of growth factors and stem cells for bone tissue engineering. Acta Biomater., 10: 520–530.
]Search in Google Scholar
[
Pilliar R.M., Filiaggi M.J., Wells J.D., Grynpas M.D., Kandel R.A. (2001). Porous calcium polyphosphate scaffolds for bone substitute applications—In vitro characterization. Biomaterials, 22: 963–972.
]Search in Google Scholar
[
Post M. (2014).Cultured beef: Medical technology to produce food. J. Sci. Food Agric., 94: 1039–1041.
]Search in Google Scholar
[
Post M.J., Levenberg S., Kaplan D.L., Genovese N., Fu J., Bryant C.J., Negowetti N., Verzijden K., Moutsatsou P. (2020). Scientific, sustainability and regulatory challenges of cultured meat. Nat. Food, 1: 403–415.
]Search in Google Scholar
[
Post M.J., Levenberg S., Kaplan D.L., Genovese N., Fu J., Bryant C.J., Negowetti N., Verzijden K., Moutsatsou P. (2020). Scientific, sustainability and regulatory challenges of cultured meat. Nature Food, 1 (7):403–15.
]Search in Google Scholar
[
Prasad A., Sankar M.R., Katiyar V. (2017). State of art on solvent casting particulate leaching method for orthopedic scaffolds fabrication. Mater. Today Proc., 4: 898–907.
]Search in Google Scholar
[
Raghothaman D., Leong M.F., Lim T.C., Toh J.K., Wan A.C., Yang Z., Lee, E.H. (2014). Engineering cell matrix interactions in assembled polyelectrolyte fiber hydrogels for mesenchymal stem cell chondrogenesis. Biomaterials 35 (9):2607–16.
]Search in Google Scholar
[
Rahmati M., Mills D.K., Urbanska A.M., Saeb M.R., Venugopal J.R., Ramakrishna S., Mozafari M. (2021). Electrospinning for tissue engineering applications. Prog Mater Sci., 117:100721.
]Search in Google Scholar
[
Ramani S., Ko D., Kim B., Cho C., Kim W., Jo C., Lee C.K., Kang J., Hur S., Park S. (2021). Technical requirements for cultured meat production: a review. J. Anim. Sci. Technol., 63: 681–692.
]Search in Google Scholar
[
Reiss J., Robertson S., Suzuki M. (2021). Cell sources for cultivated meat: applications and considerations throughout the production workflow. Int. J. Mol. Sci., 22: 7513.
]Search in Google Scholar
[
Rieder E., Kasimir M.T., Silberhumer G., Seebacher G., Wolner E., Simon P., Weigel G. (2004). Decellularization protocols of porcine heart valves differ importantly in efficiency of cell removal and susceptibility of the matrix to recellularization with human vascular cells. J. Thorac. Cardiovasc. Surg., 127 (2):399–405.
]Search in Google Scholar
[
Riley M., Vermerris W. (2017). Recent advances in nanomaterials for gene delivery-A review. Nanomaterials, 7: 94.
]Search in Google Scholar
[
Rodríguez-Vázquez M., Vega-Ruiz B., Ramos-Zúñiga R., Saldaña-Koppel D.A., Quiñones-Olvera L.F. (2015). Chitosan and its potential use as a scaffold for tissue engineering in regenerative medicine. Biomed. Res. Int., 2015: 1–15.
]Search in Google Scholar
[
Rosser J., Thomas-Vazquez, D. (2018). Bioreactor processes for maturation of 3D bioprinted tissue. In 3D Bioprinting for Reconstructive Surgery, 1st ed.; Whitaker, T.J., Ed.; Elsevier Wordmark: Amsterdam, The Netherlands, 2018.
]Search in Google Scholar
[
Rubio N.R., Datar I., Stachura D., Kaplan D., Krueger K. (2019a). Cell-based fish: A novel approach to seafood production and an opportunity for cellular agriculture. Front. Sustain. Food Syst., 3.
]Search in Google Scholar
[
Rubio N.R., Fish K.D., Trimmer B.A., Kaplan D.L. (2019b). Possibilities for engineered insect tissue as a food source. Front. Sustain. Food. Syst., 3.
]Search in Google Scholar
[
Sandmaier S.E.S., Nandal A., Powell A., Garrett W., Blomberg L., Donovan D.M., Talbot N., Telug B.P. (2015). Generation of induced pluripotent stem cells from domestic goats. Mol.Reprod. Dev., 82: 709–721.
]Search in Google Scholar
[
Scarfone R.A., Pena S.M., Russell K.A., Betts D.H., Koch T.G. (2020). The use of induced pluripotent stem cells in domestic animals: a narrative review. BMC Vet. Res., 16: 477.
]Search in Google Scholar
[
Seah J.S.H., Singh S., Tan L.P., Choudhury D. (2022) Scaffolds for the manufacture of cultured meat, Crit. Rev. Biotechnol., 42:2: 311-323.
]Search in Google Scholar
[
Sealy M., Avegnon K., Garrett A., Delbreilh L., Bapat S., Malshe A. (2022). Understanding biomanufacturing of soy-based scaffolds for cell-cultured meat by vat polymerization. CIRP Annals, 71(1): 209–12.
]Search in Google Scholar
[
sen Sarkar N., Choudhury S. (2017). Algae as source of natural flavour enhancers - A mini review. Plant Sci. Today, 4: 172–176.
]Search in Google Scholar
[
Sharma M., Kaur S., Kumar P., Mehta N., Umaraw P., Ghosh S. (2022). Development, prospects, and challenges of meat analogs with plant-based alternatives, in: Recent Advances in Food Biotechnology. Springer Nature Singapore, Singapore, pp. 275–299.
]Search in Google Scholar
[
Siegrist M., Sütterlin B. (2017). Importance of perceived naturalness for acceptance of food additives and cultured meat. Appetite, 113: 320-326.
]Search in Google Scholar
[
Siegrist M., Sütterlin B., Hartmann C. (2018). Perceived naturalness and evoked disgust influence acceptance of cultured meat. Meat Sci., 139: 213-219.
]Search in Google Scholar
[
Sola A., Bertacchini J., D’Avella D., Anselmi L., Maraldi T., Marmiroli S., Messori M. (2019). Development of solvent-casting particulate leaching (SCPL) polymer scaffolds as improved three-dimensional supports to mimic the bone marrow niche. Mater. Sci. Eng. C, Materials Biol. Applic., 96: 153–65.
]Search in Google Scholar
[
Specht E.A., Welch D.R., Rees Clayton E.M., Lagally C.D. (2018). Opportunities for applying biomedical production and manufacturing methods to the development of the clean meat industry. Biochem. Eng. J., 132: 161–168.
]Search in Google Scholar
[
Stephens N., Di Silvio L., Dunsford I., Ellis M., Glencross A., Sexton A. (2018). Bringing cultured meat to market: Technical, socio-political, and regulatory challenges in cellular agriculture. Trends Food Sci. Technol., 78:155-166.
]Search in Google Scholar
[
Stout A.J., Mirliani A.B., Rittenberg M.L., Shub M., White E.C., Yuen J.S.K., Kaplan D.L. (2022). Simple and effective serum-free medium for sustained expansion of bovine satellite cells for cell cultured meat. Commun. Biol. 5(1): 466.
]Search in Google Scholar
[
Tabei Y., Muranaka T. (2020). Preface to the special issue “Technology in tissue culture toward horizon of plant biotechnology”. Plant Biotechnol., 37(2): 117-120.
]Search in Google Scholar
[
Takahashi I., Sato K., Mera H., Wakitani S., Takagi M. (2017). Effects of agitation rate on aggregation during beads-to-beads subcultivation of microcarrier culture of human mesenchymal stem cells. Cytotechnol., 69: 503–509.
]Search in Google Scholar
[
Takahashi K., Yamanaka S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126: 663–676.
]Search in Google Scholar
[
Takahashi K., Yamanaka S. (2016). A decade of transcription factor-mediated reprogramming to pluripotency. Nat. Rev. Mol. Cell. Biol., 17: 183–193.
]Search in Google Scholar
[
Tallawi M., Rosellini E., Barbani N., Cascone M.G., Rai R., Saint-Pierre G., Boccaccini A.R. (2015). Strategies for the chemical and biological functionalization of scaffolds for cardiac tissue engineering: a review. J. R. Soc. Interface., 12(108): 20150254–20150254.
]Search in Google Scholar
[
Taub D. (2010). Effects of rising atmospheric concentrations of carbon dioxide on plants. Nat. Sci. Edu., 3(10): 21.
]Search in Google Scholar
[
Thorrez L., Vandenburgh H. (2019). Challenges in the quest for ‘clean meat.’ Nat. Biotechnol., 37: 215–216.
]Search in Google Scholar
[
Trache D., Hussin M.H., Haafiz M.K.M., Thakur V.K. (2017). Recent progress in cellulose nanocrystals: Sources and production. Nanoscale, 9(5): 1763-1786.
]Search in Google Scholar
[
Tripathi N.K., Shrivastava A. (2019). Recent developments in bioprocessing of recombinant proteins: Expression hosts and process development. Front. Bioeng. Biotechnol., 7: 420.
]Search in Google Scholar
[
Tsai A.C., Liu Y., Yuan X., Chella R., Ma T. (2017). Aggregation kinetics of human mesenchymal stem cells under wave motion. Biotechnol. J., 12: 1600448.
]Search in Google Scholar
[
Tuomisto H.L., de Mattos, M.J. (2011). Environmental impacts of cultured meat production. Environ. Sci. Technol., 45: 6117–6123.
]Search in Google Scholar
[
Uruakp F. (2015). Influence of cowpea (Vigna unguiculata) peptides on insulin resistance. J. Nutrit. Health Food Sci., 3(2): 1-3.
]Search in Google Scholar
[
Verbruggen S., Luinin D., van Essen, A., Post M.J. (2018). Bovine myoblast cell production in a microcarriers-based system. Cytotechnol., 70: 503–512.
]Search in Google Scholar
[
Wang W., Zhang T., Wu C., Wang S., Wang Y., Li H., Wang N. (2017). Immortalization of chicken preadipocytes by retroviral transduction of chicken TERT and TR. PLoS One, 12: e0177348.
]Search in Google Scholar
[
Warner R.D. (2019). Review: Analysis of the process and drivers for cellular meat production. Animal, 13: 3041–3058.
]Search in Google Scholar
[
Werner M., Petersen A., Kurniawan N.A., Bouten C.V.C. (2019). Cell‐perceived substrate curvature dynamically coordinates the direction, speed, and persistence of stromal cell migration. Adv. Biosyst., 3: 1900080.
]Search in Google Scholar
[
Wheeler J.A., Hoch G., Cortés A.J., Sedlacek J., Wipf S., Rixen C. (2014). Increased spring freezing vulnerability for alpine shrubs under early snowmelt. Oecologia, 175: 219–229.
]Search in Google Scholar
[
Wilks M., Phillips C.J. (2017). Attitudes to in vitro meat: A survey of potential consumers in the United States. PLoS ONE, 12: e0171904.
]Search in Google Scholar
[
Willard J.J., Drexler J.W., Das A., Roy S., Shilo S., Shoseyov O., Powell H.M. (2013). Plant-derived human collagen scaffolds for skin tissue engineering. Tissue Eng. Part A, 19: 1507–1518.
]Search in Google Scholar
[
Wu Z., Chen J., Ren J., Bao L., Liao J., Cui C., Rao L., Li H., Gu Y., Dai H., Zhu H., Teng X., Cheng L., Xiao L. (2009). Generation of pig induced pluripotent stem cells with a drug-inducible system. J. Mol. Cell Biol., 1: 46–54.
]Search in Google Scholar
[
Xu S., Jiang R., Mueller R., Hoesli N., Kretz T., Bowers J., Chen H. (2018). Probing lactate metabolism variations in large-scale bioreactors. Biotechnol. Prog., 34: 756–766.
]Search in Google Scholar
[
Xue, X., Hu, Y., Wang, S., Chen, X., Jiang Y., Su, J. (2022). Fabrication of physical and chemical crosslinked hydrogels for bone tissue engineering. Bioact. Mater., 12:327–39. doi: 10.1016/j.bioactmat. 2021.10.029.
]Search in Google Scholar
[
Yablonka-Reuveni Z. (2011). The skeletal muscle satellite cell: still young and fascinating at 50. J. Histochem. Cytochem., 59: 1041–1059.
]Search in Google Scholar
[
YekrangSafakar A., Hamel K.M., Mehrnezhad A., Jung J.P., Park K. (2020). Development of rolled scaffold for high-density adherent cell culture. Biomed. Microdevices, 22: 4.
]Search in Google Scholar
[
Yuen Jr J.S.K., Stout A.J., Kawecki N.S., Letcher S.M., Theodossiou S.K., Cohen J.M., Barrick B.M., Saad M.K., Rubio N.R., Pietropinto J.A., DiCindio H., Zhang S.W., Rowat A.C., Kaplan D.L. (2022). Perspectives on scaling production of adipose tissue for food applications. Biomaterials, 280: 121273.
]Search in Google Scholar
[
Zhang C., Wohlhueter R., Zhang H. (2016). Genetically modified foods: A critical review of their promise and problems. Food Sci. Hum. Wellness, 5: 116–123.
]Search in Google Scholar
[
Zhang S., Wang H. (2019). Current progress in 3D bioprinting of tissue analogs. SLAS Technol., 24: 70–78.
]Search in Google Scholar
[
Zheng Y.Y., Chen Y., Zhu H.Z., Li C.B., Song W.J., Ding S.J., Zhou G.H. (2022). Production of cultured meat by culturing porcine smooth muscle cells in vitro with food grade peanut wire-drawing protein scaffold. Food Res. Int., 159: 111561.
]Search in Google Scholar
[
Zheng Y.Y., Zhu H.Z., Wu Z.Y., Song W.J., Tang C.B., Li C.B., Ding S.J., Zhou G.H. (2021). Evaluation of the effect of smooth muscle cells on the quality of cultured meat in a model for cultured meat. Food Res. Int., 150: 110786.
]Search in Google Scholar
[
Zhou X.X., Jin, L., Qi R.Q., Ma T. (2018). pH-responsive polymeric micelles self-assembled from amphiphilic copolymer modified with lipid used as doxorubicin delivery carriers. R. Soc. Open Sci., 5: 171654.
]Search in Google Scholar
[
Zidarič T., Milojević M., Vajda J., Vihar B., Maver U. (2020). Cultured meat: Meat industry hand in hand with biomedical production methods. Food Eng. Rev., 12: 498–519.
]Search in Google Scholar