Zacytuj

Al Akeel R. (2013). Role of epigenetic reprogramming of host genes in bacterial pathogenesis. Saudi J. Biol. Sci., 20: 305–309.10.1016/j.sjbs.2013.05.003Search in Google Scholar

Bagnicka E., Kawecka E., Pawlina-Tyszko K., Kapusta A., Zalewska M., Kościuczuk E., Ząbek T. (2021). MicroRNA expression profile in bovine mammary gland secretory tissue parenchyma infected by coagulase-positive or coagulase-negative staphylococci. Vet. Res., 52: 41.10.1186/s13567-021-00912-2Search in Google Scholar

Bostedt H., Boryczko Z., Scheid T. (2001). Diagnostyka i terapia ostrych postaci zapalenia gruczołu mlekowego u krów (in Polish). Życie Wet., 76: 477–479.Search in Google Scholar

Bradley A.J. (2002). Bovine mastitis: an evolving disease. Vet. J., 164: 116–128.10.1053/tvjl.2002.0724Search in Google Scholar

Carr M.W., Roth S.J., Luther E., Rose S.S., Springer T.A. (1994). Monocyte chemoattractant protein 1 acts as a T-lymphocyte chemoattractant. Proc. Natl. Acad. Sci. USA, 91: 3652–3656.10.1073/pnas.91.9.3652Search in Google Scholar

Chang G., Petzl W., Vanselow J., Günther J., Shen X., Seyfert H.M. (2015). Epigenetic mechanisms contribute to enhanced expression of immune response genes in the liver of cows after experimentally induced Escherichia coli mastitis. Vet. J., 203: 339–341.10.1016/j.tvjl.2014.12.023Search in Google Scholar

Dall E., Brandstetter H. (2016). Structure and function of legumain in health and disease. Biochimie, 122: 126–150.10.1016/j.biochi.2015.09.022Search in Google Scholar

Fijałkowski K., Czernomysy-Furowicz D., Ferlas M. (2008). Staphylococcus aureus kontra układ immunologiczny (in Polish). Post. Mikrobiol., 47: 497–501.Search in Google Scholar

Gibney E.R., Nolan C.M. (2010). Epigenetics and gene expression. Heredity (Edinb.), 105: 4–13.10.1038/hdy.2010.54Search in Google Scholar

Guiet R., Poincloux R., Castandet J., Marois L., Labrousse A., Le Cabec V., Maridonneau-Parini I. (2008). Hematopoietic cell kinase (Hck) isoforms and phagocyte duties – from signaling and actin reorganization to migration and phagocytosis. Eur. J. Cell Biol., 87: 527–542.10.1016/j.ejcb.2008.03.008Search in Google Scholar

Hagnestam-Nielsen C., Emanuelson U., Berglund B., Strandberg E. (2009). Relationship between somatic cell count and milk yield in different stages of lactation. J. Dairy Sci., 92: 3124–3133.10.3168/jds.2008-1719Search in Google Scholar

Hall T.A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser., 41: 95–98.Search in Google Scholar

Hinchs D., Bennewitz J., Stamer E., Junge W., Kalm E., Thaller G. (2011). Genetic analysis of mastitis data with different models. J. Dairy Sci., 94: 471–478.10.3168/jds.2010-3374Search in Google Scholar

Huang J., Luo G., Zhang Z., Wang X., Ju Z., Qi C., Zhang Y., Wang C., Li R., Li J., Yin W., Xu Y., Moisá S.J., Loor J.J., Zhong J. (2014). iTRAQ-proteomics and bioinformatics analyses of mammary tissue from cows with clinical mastitis due to natural infection with Staphylococci aureus. BMC Genomics, 15: 839.10.1186/1471-2164-15-839Search in Google Scholar

Ju Z., Jiang Q., Wang J., Wang X., Yang C., Sun Y., Zhang Y., Wang C., Gao Y., Wei X., Hou M., Huang J. (2020). Genome-wide methylation and transcriptome of blood neutrophils reveal the roles of DNA methylation in affecting transcription of protein-coding genes and miRNAs in E. coli-infected mastitis cows. BMC Genomics, 21: 102.10.1186/s12864-020-6526-zSearch in Google Scholar

Kościuczuk E.M., Lisowski P., Jarczak J., Krzyżewski J., Zwierzchowski L., Bagnicka E. (2014). Expression patterns of β-defensin and cathelicidin genes in parenchyma of bovine mammary gland infected with coagulase-positive or coagulase-negative Staphylococci. BMC Vet. Res., 10: 246.10.1186/s12917-014-0246-zSearch in Google Scholar

Kościuczuk E.M., Lisowski P., Jarczak J., Majewska A., Rzewuska M., Zwierzchowski L., Bagnicka E. (2017). Transcriptome profiling of Staphylococci-infected cow mammary gland parenchyma. BMC Vet. Res., 13: 161.10.1186/s12917-017-1088-2Search in Google Scholar

Leakey T., Zielinski J., Siegfried R.N., Siegel E.R., Fan C.Y., Cooney C.A. (2008). A simple algorithm for quantifying DNA methylation levels on multiple independent CpG sites in bisulfite genomic sequencing electropherograms. Nucleic Acids Res., 36: e64.10.1093/nar/gkn210Search in Google Scholar

Leitner G., Chaffer M., Krifucks O., Glickman A., Ezra E., Saran A. (2000). Milk leukocyte populations in heifers free from udder infection. J. Vet. Med. B. Infect. Dis. Vet. Public Health, 47: 133–138.10.1046/j.1439-0450.2000.00329.xSearch in Google Scholar

Malinowski E., Lassa H., Kłossowska A., Smulski S., Markiewicz H., Kaczmarowski M. (2006). Etiological agents of dairy cows’ mastitis in western part of Poland. Pol. J. Vet. Sci., 9: 191–194.Search in Google Scholar

Mao Y.J., Zhu X.R., Li R., Chen D., Xin S.Y., Zhu Y.H., Liao X.X., Wang X.L., Zhang H.M., Yang Z.P., Yang L.G. (2015). Methylation analysis of CXCR1 in mammary gland tissue of cows with mastitis induced by Staphylococcus aureus. Genet. Mol. Res., 14: 12606–12615.10.4238/2015.October.19.4Search in Google Scholar

Miceli M.C., Parnes J.R. (1991). The roles of CD4 and CD8 in T cell activation. Semin. Immunol., 3: 133–141.Search in Google Scholar

Ogorevc J., Kunej T., Razpet A., Dovc P. (2009). Database of cattle candidate genes and genetic markers for milk production and mastitis. Anim. Genet., 40: 832–851.10.1111/j.1365-2052.2009.01921.xSearch in Google Scholar

Oviedo-Boyso J., Valdez-Alarcón J.J., Cajero-Juárez M., Ochoa-Zarzosa A., López-Meza J.E., Bravo-Patiño A., Baizabal-Aguirre V.M. (2007). Innate immune response of bovine mammary gland to pathogenic bacteria responsible for mastitis. J. Inf. Secur., 54: 399–409.10.1016/j.jinf.2006.06.010Search in Google Scholar

Poh A.R., O’Donoghue R.J., Ernst M. (2015). Hematopoietic cell kinase (HCK) as a therapeutic target in immune and cancer cells. Oncotarget, 6: 15752–15771.10.18632/oncotarget.4199Search in Google Scholar

R Development Core Team (2011). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/Search in Google Scholar

Rainard P., Cunha P., Gilbert F.B. (2016). Innate and adaptive immunity synergize to trigger inflammation in the mammary gland. PLoS One, 11:e0154172.10.1371/journal.pone.0154172Search in Google Scholar

Singh K., Molenaar A.J., Swanson K.M., Stelwagen K. (2010). DNA methylation is associated with a suppression of aS1-casein gene expression during involution and infection of the bovine mammary gland. IDF World Dairy Summit, Auckland.Search in Google Scholar

Song M.Y., He Y.H., Zhou H.K., Zhang Y., Yu Y. (2016). Combined analysis of DNA methylome and transcriptome reveal novel candidate genes with susceptibility to bovine Staphylococcus aureus subclinical mastitis. Sci. Rep., 6: 29390.10.1038/srep29390Search in Google Scholar

Swanson K.M., Stelwagen K., Dobson J., Henderson H.V., Davis S.R., Farr V.C., Singh K. (2009). Transcriptome profiling of Streptococcus uberis-induced mastitis reveals fundamental differences between immune gene expression in the mammary gland and in a primary cell culture model. J. Dairy. Sci., 92: 117–129.10.3168/jds.2008-1382Search in Google Scholar

Thompson-Crispi K., Atalla H., Miglior F., Mallard B.A. (2014). Bovine mastitis: frontiers in immunogenetics. Front Immunol., 5: 493.10.3389/fimmu.2014.00493Search in Google Scholar

Vanselow J., Yang W., Herrmann J., Zerbe H., Schuberth H.J., Petzl W., Tomek W., Seyfert H.M. (2006). DNA-remethylation around a STAT5-binding enhancer in the alphaS1-casein promoter is associated with abrupt shutdown of alphaS1-casein synthesis during acute mastitis. J. Mol. Endocrinol., 37: 463–477.10.1677/jme.1.02131Search in Google Scholar

Viguier C., Arora S., Gilmartin N., Welbeck K., O’Kennedy R. (2009). Mastitis detection: current trends and future perspectives. Trends Biotechnol., 27: 486–493.10.1016/j.tibtech.2009.05.004Search in Google Scholar

Wang D., Wei Y., Shi L., Khan M.Z., Fan L., Wang Y., Yu Y. (2019). Genome-wide DNA methylation pattern in a mouse model reveals two novel genes associated with Staphylococcus aureus mastitis. Asian-Australas. J. Anim. Sci., 15: 203–211.10.5713/ajas.18.0858Search in Google Scholar

Wang X.S., Zhang Y., He Y.H., Ma P.P., Fan L.J., Wang Y.C., Zhang Y.I., Sun D.X., Zhang S.L., Wang C.D., Song J.Z., Yu Y. (2013). Aberrant promoter methylation of the CD4 gene in peripheral blood cells of mastitic dairy cows. Genet. Mol. Res., 12: 6228–6239.10.4238/2013.December.4.10Search in Google Scholar

Watts L.J. (1988). Etiological agents of bovine mastitis. Vet. Microbiol., 16: 41–66.10.1016/0378-1135(88)90126-5Search in Google Scholar

Xu L.L., Warren M.K., Rose W.L., Gong W., Wang J.M. (1996). Human recombinant monocyte chemotactic protein and other C-C chemokines bind and induce directional migration of dendritic cells in vitro. J. Leukoc. Biol., 60: 365–371.10.1002/jlb.60.3.365Search in Google Scholar

Ząbek T., Semik-Gurgul E., Ropka-Molik K., Szmatoła T., Kawecka-Grochocka E., Zalewska M., Kościuczuk E., Wnuk M., Bagnicka E. (2020). Locus-specific interrelations between gene expression and DNA methylation patterns in bovine mammary gland infected by coagulase-positive and coagulase-negative staphylococci. J. Dairy Sci., 103: 10689–10695.10.3168/jds.2020-18404Search in Google Scholar

Zhang Y., Wang X., Jiang Q., Hao H., Ju Z., Yang C., Sun Y., Wang C., Zhong J., Huang J., Zhu H. (2018). DNA methylation rather than single nucleotide polymorphisms regulates the production of an aberrant splice variant of IL6R in mastitic cows. Cell Stress Chaperones, 23: 617–628.10.1007/s12192-017-0871-0Search in Google Scholar

eISSN:
2300-8733
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine