Otwarty dostęp

Effect pf Fermented Rapeseed Meal as a Feed Component on the Redox and Immune System of Pregnant Sows and their Offspring


Zacytuj

Cai C.J., Cai P.P., Hou C.L., Zeng X.F., Qiao S.Y. (2014). Administration of Lactobacillus fermentum I5007 to young piglets improved their health and growth. J. Anim. Feed Sci., 23: 222–227.10.22358/jafs/65684/2014Search in Google Scholar

Campbell M., Crenshaw J.D., Polo J. (2013). The biological stress of early weaned piglets. J. Anim. Sci. Biotech., 4: 1–8.10.1186/2049-1891-4-19Search in Google Scholar

Canibe N., Jensen B.B. (2012). Fermented liquid feed – microbial and nutritional aspects and impact on enteric diseases in pigs. Anim. Feed Sci. Technol., 173: 17–40.10.1016/j.anifeedsci.2011.12.021Search in Google Scholar

Casanueva E., Viteri F.E. (2003). Iron and oxidative stress in pregnancy. J. Nutr., 133: 1700–1708.10.1093/jn/133.5.1700SSearch in Google Scholar

Castillo C., Hernandez J., Bravo A., Lopez-Alonso M., Pereira V., Benedito J.L. (2005). Oxidative status during late pregnancy and early lactation in dairy cows. Vet. J., 169: 286–292.10.1016/j.tvjl.2004.02.001Search in Google Scholar

Ceriello A., Bortolotti N., Falleti E., Taboga C., Tonutti L., Crescentini A., Motz E., Lizzio S., Russo A., Bartoli E. (1997). Total radical-trapping antioxidant parameter in NIDDM patients. Diab. Care, 20: 194–197.10.2337/diacare.20.2.194Search in Google Scholar

Czech A., Grela E.R. (2004). Biochemical and haematological blood parameters of sows during pregnancy and lactation fed the diet with different source and activity of phytase. Anim. Feed Sci. Technol., 116: 211–223.10.1016/j.anifeedsci.2004.07.013Search in Google Scholar

Czech A., Grela E.R., Mokrzycka A., Pejsak Z. (2010). Efficacy of mannanoligosaccharides additive to sows diets on colostrum, blood immunoglobulin content and production parameters of piglets. Pol. J. Vet. Sci., 13: 525–531.Search in Google Scholar

Czech A., Ognik K., Laszewska M., Sembratowicz I. (2017). The effect of raw and extruded linseed on the chemical composition, lipid profile and redox status of meat of turkey hens. Anim. Sci. Pap. Rep., 35: 57–69.Search in Google Scholar

Czech A., Grela E.R., Kiesz M., Kłys S. (2020). Biochemical and haematological blood parameters of sows and piglets fed a diet with a dried fermented rapeseed meal. Ann. Anim. Sci., 20: 535–550.10.2478/aoas-2019-0079Search in Google Scholar

De Vos W.M. (1996). Metabolic engineering of sugar catabolism in lactic acid bacteria. Antonie van Leeuwenhoek, 70: 223–242.10.1007/BF00395934Search in Google Scholar

Declerck I., Dewulf J., Piepers S., Decaluwé R., Maes D. (2015). Sow and litter factors influencing colostrum yield and nutritional composition. J. Anim. Sci., 93: 1309–1317.10.2527/jas.2014-8282Search in Google Scholar

Gao J., Zhang H.J., Wu S.G., Yu S.H., Yoon I., Moore D. (2009). Effect of Saccharomyces cerevisiae fermentation product on immune functions of broilers challenged with Eimeria tenella. Poultry Sci., 88: 2141–2151.10.3382/ps.2009-00151Search in Google Scholar

Grela E.R., Czech A., Kiesz M., Wlazło Ł., Nowakowicz-Dębek B. (2019). The effects of a fermented rapeseed meal additive on reproductive performance, nutrient digestibility, colostrum immunoglobulin content and microbial flora in sows. Anim. Nutr., 5: 373–379.10.1016/j.aninu.2019.05.004Search in Google Scholar

Guillemet R., Dourmad J.Y., Meunier-Salaun M.C. (2006). Feeding behaviour in primiparous lactating sows: Impact of a high-fiber diet during pregnancy. J. Anim. Sci., 84: 2474–2481.10.2527/jas.2006-024Search in Google Scholar

Jakobsen G.V., Jensen B.B., Bach Knudsen K.E., Brooks N. (2015). Improving the nutritional value of rapeseed cake and wheat dried distillers grains with solubles by addition of enzymes during liquid fermentation. Anim. Feed Sci. Technol., 208: 198–213.10.1016/j.anifeedsci.2015.07.015Search in Google Scholar

Jha R., Leterme P. (2012). Feed ingredients differing in fermentable fibre and indigestible protein content affect fermentation metabolites and faecal nitrogen excretion in growing pigs. Animal, 6: 603–611.10.1017/S1751731111001844Search in Google Scholar

Kirchgessner M., Roth F.X. (1983). Schätzgleichungen zur Ermittlung des energetischen Futterwertes von Mischfuttermitteln für Schweine. Anim. Physiol. Anim. Nutr., 50: 270–275.10.1111/j.1439-0396.1983.tb00694.xSearch in Google Scholar

Knauf H.J., Vogel R.F., Hammes W.P. (1992). Cloning, sequencing, and phenotypic expression of katA, which encodes the catalase of Lactobacillus sake LTH677. Appl. Environ. Microbiol., 58: 832–839.10.1128/aem.58.3.832-839.1992Search in Google Scholar

Liu K., Wu W., Li B., Wei W., Liu Z., Liu H. (2018). Changes in oxidative stress status in sows from days 100 of gestation to post-partum estrus. Pakis. Vet. J., 38: 165–168.10.29261/pakvetj/2018.045Search in Google Scholar

Missotten J.A.M., Michiels J., Degroote J., De Smet S. (2015). Fermented liquid feed for pigs: an ancient technique for the future. J. Anim. Sci. Biotechnol., 6: 4.10.1186/2049-1891-6-4Search in Google Scholar

Nagler-Anderson C., Terhorst C., Bhan A.K., Podolsky D.K. (2001). Mucosal antigen presentation and the control of tolerance and immunity. Trend Immun., 22: 120–122.10.1016/S1471-4906(00)01830-5Search in Google Scholar

NRS (2012). Nutrient Requirements of Swine. 11th rev. ed. Washington, D.C. National Academies Press.Search in Google Scholar

Rooke J.A., Bland I.M. (2002). The acquisition of passive immunity in the new born piglet. Livest. Prod. Sci., 78: 13–23.10.1016/S0301-6226(02)00182-3Search in Google Scholar

Stecchini M.L., Torre M.D., Munari M. (2001). Determination of peroxy radical scavenging of lactic acid bacteria. Int. J. Food Microbiol., 64: 183–188.10.1016/S0168-1605(00)00456-6Search in Google Scholar

Sugiharto S., Ranjitkar S. (2019). Recent advances in fermented feeds towards improved broiler chicken performance, gastrointestinal tract microecology and immune responses: A review. Anim. Nutr., 5: 1–10.10.1016/j.aninu.2018.11.001Search in Google Scholar

Tomaszewska E., Muszyński S., Dobrowolski P., Kamiński D., Czech A., Grela E.R., Wiącek D., Tomczyk-Warunek A. (2019). Dried fermented post-extraction rapeseed meal given to sows as an alternative protein source for soybean meal during pregnancy improves bone development of their offspring. Livest. Sci., 224: 60–68.10.1016/j.livsci.2019.04.009Search in Google Scholar

Wang J., Ji H.F., Wang S.X., Zhang D.Y., Liu H., Shan D.C., Wang Y.M. (2012). Lactobacillus plantarum ZLP001: In vitro assessment of antioxidant capacity and effect on growth performance and antioxidant status in weaning piglets. Asian-Australas J. Anim. Sci., 25: 1153–1158.10.5713/ajas.2012.12079Search in Google Scholar

Yin J., Wu M.M., Xiao H., Ren W.K., Duan J.L., Yang G., Li T.J., Yin Y.L. (2014). Development of an antioxidant system after early weaning in piglets. J. Anim. Sci., 92: 612–619.10.2527/jas.2013-6986Search in Google Scholar

eISSN:
2300-8733
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine