[Akhter N., Wu B., Memon A.M., Mohsin M. (2015). Probiotics and prebiotics associated with aquaculture: A review. Fish Shellfish Immunol., 45: 733–741.]Search in Google Scholar
[Banerjee G., Ray A.K. (2017). Bacterial symbiosis in the fish gut and its role in health and metabolism. Symbiosis, 72: 1–11.]Search in Google Scholar
[Biggs P., Parsons C.M., Fahey G.C. (2007). The effects of several oligosaccharides on growth performance, nutrient digestibilities, and cecal microbial populations in young chicks. Poultry Sci., 86: 2327–2336.]Search in Google Scholar
[Bogucka J., Miguel Ribeiro D., Da Costa R.P.R., Bednarczyk M. (2018). Effect of synbiotic dietary supplementation on histological and histopathological parameters of Pectoralis major muscle of broiler chickens. Czech. J. Anim. Sci., 63: 263–271.]Search in Google Scholar
[Bornet F.R.J., Brouns F., Tashiro Y., Duvillier V. (2002). Nutritional aspects of short-chain fructooligosaccharides: natural occurrence, chemistry, physiology and health implications. Dig. Liver Dis., 34: 6111–6120.]Search in Google Scholar
[Cao H., Yu R., Zhang Y., Hu B., Jian S., Wen Ch., Kajbaf K., Kumar V., Yang G. (2019). Effects of dietary supplementation with β-glucan and Bacillus subtilis on growth, fillet quality, immune capacity, and antioxidant status of Pengze crucian carp (Carassius auratus var. Pengze). Aquaculture, 508: 106–112.]Search in Google Scholar
[Carani F.R., Da Silva Duran B.O., Gutierrez De Paula T., Pereira Piedade W., Dal-Pai-Silva M. (2013). Morphology and expression of genes related to skeletal muscle growth in juveniles of pirarucu (Arapaima gigas, Arapaimatidae, Teleostei). Acta Sci., Anim. Sci., 35: 219–226.]Search in Google Scholar
[Dawood M.A.O., Koshio S. (2016). Recent advances in the role of probiotics and prebiotics in carp aquaculture: A review. Aquaculture, 454: 243–251.]Search in Google Scholar
[Delzenne N.M., Kok N. (2001). Effects of fructans-type prebiotics on lipid metabolism. Am. J. Clin. Nutr., 73: 456S–458S.]Search in Google Scholar
[Delzenne N.M., Daubioul C., Neyrinck A., Lasa M., Taper H.S. (2002). Inulin and oligofructose modulate lipid metabolism in animals: review of biochemical events and future prospects. Brit. J. Nutr., 87: 255–259.]Search in Google Scholar
[De Silva S.S., Anderson T.A. (1995). Fish nutrition in aquaculture. Chapmann & Hall, London, 319 pp.]Search in Google Scholar
[Demigné C., Morand C., Levrat M., Besson C., Moundras C., Rémésy C. (1995). Effect of propionate on fatty acid and cholesterol synthesis and on acetate metabolism in isolated rat hepatocytes. Brit. J. Nutr., 74: 209–219.]Search in Google Scholar
[Dimitroglou A., Merrifield D.L., Spring P., Sweetman J., Moate R., Davies S.J. (2010). Effects of mannan oligosaccharide (MOS) supplementation on growth performance, feed utilisation, intestinal histology and gut microbiota of gilthead seabream (Sparus aurata). Aquaculture, 300: 182–188.]Search in Google Scholar
[Ebrahimi G., Ouraji H., Khalesi M., Sudagar M., Barari A., Zarei Dangesaraki M., Jani Khalili K. (2012). Effects of a prebiotic, Immunogen®, on feed utilization, body composition, immunity and resistance to Aeromonas hydrophila infection in the common carp Cyprinus carpio (Linnaeus) fingerlings. J. Anim. Physiol. Anim. Nutr., 96: 591–599.]Search in Google Scholar
[FAO (2020). Fisheries and Aquaculture, National Aquaculture Sector Overview – Poland.]Search in Google Scholar
[Folch J., Lees M., Sloane-Stanley G.H. (1957). A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem., 226: 497–509.]Search in Google Scholar
[Gibson G.R., Hutkins R., Sanders M.E., Prescott S.L., Reimer R.A., Salminen S.J., Scott K., Stanton C., Swanson K.S., Cani P.D., Verbeke K., Reid G. (2017). Expert consensus document: the International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol., 14: 491.]Search in Google Scholar
[Godfray H.C.J., Beddington J.R., Crute I.R., Haddad L., Lawrence D., Muir J.F., Pretty J., Robinson S.R., Thomas S.M., Toulmin C. (2010). Food security: the challenge of feeding billion people. Science, 327: 812–818.]Search in Google Scholar
[Grisdale-Helland B., Helland S., Gatlin D. (2008). The effects of dietary supplementation with mannanoligosaccharide, fructooligosaccharide or galactooligosaccharide on the growth and feed utilization of Atlantic salmon (Salmo salar). Aquaculture, 283: 163–167.]Search in Google Scholar
[Guerreiro I., Olivia-Teles A., Enes P. (2015). Improved glucose and lipid metabolism in European sea bass (Dicentrarchus labrax) fed short-chain fructooligosaccharides and xylooligosaccharides. Aquaculture, 441: 57–63.]Search in Google Scholar
[Guerreiro I., Oliva-Teles A., Enes P. (2017 a). Prebiotics as functional ingredients: focus on Mediterranean fish aquaculture. Rev. Aquacult., 10: 800–832.10.1111/raq.12201]Search in Google Scholar
[Guerreiro I., Serra C.R., Pousão-Ferreira P., Oliva-Teles A., Enes P. (2017 b). Prebiotics effect on growth performance, hepatic intermediary metabolism, gut microbiota and digestive enzymes of white sea bream (Diplodus sargus). Aquacult. Nutr., 24: 153–163.10.1111/anu.12543]Search in Google Scholar
[Guillen J., Natale F., Carvalho N., Casey J., Hofherr J., Druon J.-N., Martinsohn J.T. (2019). Global seafood consumption footprint. Ambio, 48: 111–122.]Search in Google Scholar
[Harper C., Wolf J.C. (2009). Morphologic effects of the stress response in fish. ILAR J., 50: 387–396.]Search in Google Scholar
[Hocquette J.F., Gondret F., Baez E., Medale F., Jurie C., Pethick D.W. (2010). Intramuscular fat content in meat-producing animals: development, genetic and nutritional control and identification of putative markers. Animal, 4: 303–319.]Search in Google Scholar
[Hoffmann L., Mazurkiewicz J., Florczyk K., Burchardt H. (2017). Using probiotic feed supplements in carp rearing. Komunikaty Rybackie, 2: 14–21.]Search in Google Scholar
[Hoffmann L., Rawski M., Nogales-Merida S., Mazurkiewicz J. (2020). Dietary inclusion of Tenebrio molitor meal in sea trout larvae rearing: Effects on fish growth performance, survival, condition, and GIT and liver enzymatic activity. Ann. Anim. Sci, 20: 579–598.]Search in Google Scholar
[Horváth L., Tamás G., Seagrave C. (2002). Carp and pond fish culture, 2nd ed. Blackwell Science: Oxford, UK.10.1002/9780470995662]Search in Google Scholar
[Hoseinifar S.H., Ahmadi A., Raeisi M., Hoseini S.M., Khalili M., Behnam-pour N. (2016). Comparative study on immunomodulatory and growth enhancing effects of three prebiotics (galactooligosaccharide, fructooligosaccharide and inulin) in common carp (Cyprinus carpio). Aquac. Res., 48: 3298–3307.]Search in Google Scholar
[Hugh A., Poston Gerald F., Combs Jr., Louis L. (1976). Vitamin E and selenium interrelations in the diet of Atlantic salmon (Salmo salar): gross, histological and biochemical deficiency signs. J. Nutr., 106: 892–904.]Search in Google Scholar
[Hussein M.S., Zaghlol A., Abd El Hakim N.F., El Nawsany M., Abo-State H.A. (2016). Effect of different growth promoters on growth performance, feed utilization and body composition of common carp (Cyprinus carpio). J. Fish Aquat. Sci., 11: 370–377.]Search in Google Scholar
[Jackson K.G., Lovegrove J.A. (2012). Impact of probiotics, prebiotics and synbiotics on lipid metabolism in humans. J. Nutr. Health Aging, 1: 181–200.]Search in Google Scholar
[Johnston I.A., Ward P.S., Goldspink G. (1975). Studies on the swimming musculature of the rainbow trout I. Fibre types. J. Fish Biol., 7: 451–458.]Search in Google Scholar
[Józefiak A., Nogales-Merida S., Rawski M., Kierończyk B., Mazurkiewicz J. (2019). Effects of insect diets on the gastrointestinal tract health and growth performance of Siberian sturgeon (Acipenser baerii Brandt, 1869). BMC Vet. Res., 15: 348.]Search in Google Scholar
[Karahmet E., Viles A., Katica A., Mlaco N., Toroman A. (2014). Differences between white and red muscle fibres diameter in three salmon fish species. Biotechnol. Anim. Husb., 30: 349–356.]Search in Google Scholar
[Kindt A., Liebisch G., Clavel T., Haller D., Hörmannsperger G., Yoon H., Kolmeder D., Sigruener A., Krautbauer S., Seeliger C., Ganzha A., Schweizer S., Morisset R., Strowig T., Daniel H., Helm D., Küster B., Krumsieke J. (2018). The gut microbiota promotes hepatic fatty acid desaturation and elongation in mice. Nat. Commun, 9: 3760.]Search in Google Scholar
[Kinsella J.E. (1986). Food component with potential benefits: the n-3 polyunsaturated fatty acids of fish oils. Food Technol., 40: 89–97.]Search in Google Scholar
[Kris-Etherton P.M., Taylor D.S., Yu-Poth S., Huth P., Moriarty K., Fishell V., Hargrove R.L., Zhao G., Etherton T.D. (2000). Polyunsaturated fatty acids in the food chain in the United States. Am. J. Clin. Nutr., 71: 179–188.]Search in Google Scholar
[Kurdomanov A., Sirakov I., Stoyanova S., Velichkova K., Nedeva I., Staykov Y. (2019). The effect of diet supplemented with Proviotic® on growth, blood biochemical parameters and meat quality in rainbow trout (Oncorhynchus mykiss) cultivated in recirculation system. AACL Bioflux, 12.]Search in Google Scholar
[Leaf A., Kang J.X., Xiao Y.F., Billman G.E. (2003). Clinical prevention of sudden cardiac death by n-3 polyunsaturated fatty acids and mechanism of prevention of arrhythmias by n-3 fish oils. Circulation, 107: 263–264.]Search in Google Scholar
[Leary S., Underwood W., Anthony R., Cartner S. (2013). AVMA Guidelines for the Euthanasia of Animals, 2013 Edition. AVMA, Schaumburg, IL, USA, pp. 67–73.]Search in Google Scholar
[Levitan E.B., Wolk A., Mittleman M.A. (2010). Fatty fish, marine ω-3 fatty acids and incidence of heart failure. Eur. J. Clin. Nutr., 64: 587–594.]Search in Google Scholar
[Listrat A., Bénédicte L., Louveau I., Astruc T., Bonnet M., Lefaucheur L., Picard B., Bugeon J. (2016). How muscle structure and composition influence meat and flesh quality. Sci. World J., 14.]Search in Google Scholar
[Lockyer S., Stanner S. (2019). Prebiotics – an added benefit of some fibre types. Nutr. Bull., 44: 74–91.]Search in Google Scholar
[Macfarlane S., Macfarlane G.T., Cummings J. (2006). Review article: Prebiotics in the gastrointestinal tract. Aliment. Pharmacol. Ther., 24: 701–714.]Search in Google Scholar
[Maharajana A., Rufus Kitto M., Paruruckumania P.S., Ganapiriyaa V. (2016). Histopathology biomarker responses in Asian sea bass, Lates calcarifer (Bloch) exposed to copper. JOBAZ, 77: 21–30.]Search in Google Scholar
[Mansour M.R., Akrami R., Ghobadi S.H., Amani Denji K., Ezatrahimi N., Gharaei A. (2012). Effect of dietary mannan oligosaccharide (MOS) on growth performance, survival, body composition, and some hematological parameters in giant sturgeon juvenile (Huso huso Linnaeus, 1754). Fish Physiol. Biochem., 38: 829–835.]Search in Google Scholar
[Maraschiello C., Diaz I., Garcia Regueiro J.A. (1996). Determination of cholesterol in fat and muscle of pig by HPLC and capillary gas chromatography with solvent venting injection. J. High Resolut. Chromatogr., 19: 165–168.]Search in Google Scholar
[Markowiak P., Śliżewska K. (2018). The role of probiotics, prebiotics and synbiotics in animal nutrition. Gut Pathog., 10: 21.]Search in Google Scholar
[Mazurkiewicz J., Przybył A., Golski J. (2008). Usability of fermacto prebiotic in feeds for common carp (Cyprinus carpio L.) fry. Nauka Przyr. Technol., 2: 3.]Search in Google Scholar
[Miyatake H. (1997). Carp (in Japanese). Yoshoku, 34: 108–111.]Search in Google Scholar
[Moreira A.B., Visentainer J.V., De Souza N.E., Matsushita M. (2001). Fatty acids profile and cholesterol contents of three Brazilian Brycon freshwater fishes. J. Food Compost. Anal., 14: 565–574.]Search in Google Scholar
[Mousavi E., Mohammadiazarm H., Mousavi S.M., Ghatrami E.R. (2016). Effects of inulin, savory and onion powders in diet of juveniles carp Cyprinus carpio (Linnaeus 1758) on gut microflora, immune response and blood biochemical parameters. TrJFAS, 16: 831–838.]Search in Google Scholar
[Munir M.B., Hashim R., Manaf M.S.A., Nor S.A.M. (2016). Dietary prebiotics and probiotics influence the growth performance, feed utilization, and body indices of snakehead (Channa striata) fingerlings. Trop. Life Sci. Res., 27: 111–125.]Search in Google Scholar
[NRC (2011). Nutrient Requirement of Fish and Shrimp. Animal Nutrition Series. The National Academies Press, Washington, DC.]Search in Google Scholar
[Piccolo G., Centoducati G., Bovera F., Marrone R., Nizza A. (2013). Effects of mannan oligosaccharide and inulin on sharpsnout seabream (Diplodus puntazzo) in the context of partial fish meal substitution by soybean meal. Ital. J. Anim. Sci., 12: 133–138.]Search in Google Scholar
[Piironen V., Toivo J., Lampi A.M. (2002). New data for cholesterol contents in meat, fish, milk, eggs and their products consumed in Finland. J. Food Compost. Anal., 15: 705–713.]Search in Google Scholar
[Pokusaeva K., Fitzgerald G.F., Sinderen D. (2011). Carbohydrate metabolism in Bifidobacteria. Genes Nutr., 6: 285.]Search in Google Scholar
[Priester C., Lindsay C.M., Stephen T.K., Wade O.W., Richard M.D. (2011). Growth patterns and nuclear distribution in white muscle fibres from black sea bass, Centropristis striata: evidence for the influence of diffusion. J. Exp. Biol., 214: 1230–1239.]Search in Google Scholar
[Puchała R., Pilarczyk M. (2007). The influence of nutrition on the chemical composition of carp meat (in Polish). Inż. Rol., 5: 363–368.]Search in Google Scholar
[Rabah S. (2005). Light microscope study of Oncorhynchus kisutch muscle development. Egypt. J. Aquat. Res., 31: 1.]Search in Google Scholar
[Schmidt E.B., Arnesen H., de Caterina R., Rasmussen L.H., Kristensen S.D. (2005). Marine n-3 polyunsaturated fatty acids and coronary heart disease: Part I. Background, epidemiology, animal data, effects on risk factors and safety. Thromb. Res., 115: 163–170.]Search in Google Scholar
[Scholz-Ahrens K.E., Ade P., Marten B., Weber P., Timm W., Aςil Y., Gluer C.C., Schrezenmeir J. (2007). Prebiotics, probiotics, and synbiotics affect mineral absorption, bone mineral content, and bone structure. J. Nutr., 137: 838S–846S.]Search in Google Scholar
[Steffens W., Wirth M. (2005). Freshwater fish – an important source of n-3 polyunsaturated fatty acids: A review. Arch. Polish Fish, 13: 5–16.]Search in Google Scholar
[Steffens W., Wirth M. (2007). Influence of nutrition on the lipid quality of pond fish: common carp (Cyprinus carpio) and tench (Tinca tinca). Aquac. Int., 15: 313–319.]Search in Google Scholar
[Sun W., Li X., Xu H., Chen J., Xu X., Leng X. (2017). Effects of dietary geniposide on growth, flesh quality, and lipid metabolism of grass carp, Ctenopharyngodon idella. J. World Aquac. Soc., 48: 927–937.]Search in Google Scholar
[Takeuchi T., Satoh S., Kiron V. (2002). Common carp, Cyprinus carpio. In: Nutrient requirements and feeding of finfish for aquaculture, C.D. Webster, C. Lim (eds). CABI Publishing, New York, 245–261.10.1079/9780851995199.0245]Search in Google Scholar
[Talpur A.D., Munir M.B., Mary A., Hashim R. (2014). Dietary probiotics and prebiotics improved food acceptability, growth performance, hematology and immunological parameters and disease resistance against Aeromonas hydrophila in snakehead (Channa striata) fingerlings. Aquaculture, 426: 14–20.]Search in Google Scholar
[Tavaniello S., Maiorano G., Stadnicka K., Mucci R., Bogucka J., Bednarczyk M. (2018). Prebiotics offered to broiler chicken exert positive effect on meat quality traits irrespective of delivery route. Poultry Sci. J., 97: 2979–2987.]Search in Google Scholar
[Topic Popovic N., Strunjak-Perovic I., Coz-Rakovac R., Barisic J., Jadan M., Persin Berakovic A., Sauerborn Klobucar R. (2012). Tricaine methane-sulfonate (MS-222) application in fish anaesthesia. J. Appl. Ichthyol., 28: 553–564.]Search in Google Scholar
[Tzortzis G., Goulas A.K., Gibson G.R. (2005). Synthesis of prebiotic galactooligosaccharides using whole cells of a novel strain, Bifidobacterium bifidum NCIMB 41171. Appl. Microbiol. Biotechnol., 68: 412–416.]Search in Google Scholar
[Ulbricht T.L.V., Southgate D.A.T. (1991). Coronary heart disease: seven dietary factors. Lancet, 338: 985–992.]Search in Google Scholar
[Velasco S., Ortiz L.T., Alzueta C., Rebole A., Trevino J., Rodriguez M.L. (2010). Effect of inulin supplementation and dietary fat source on performance, blood serum metabolites, liver lipids, abdominal fat deposition, and tissue fatty acid composition in broiler chickens. Poultry Sci. J., 89: 1651–1662.]Search in Google Scholar
[Wang J., Zhang D., Sun Y., Wang S., Li P., Gatlin D.M., Zhang L. (2016 a). Effect of a dairy-yeast prebiotic (GroBiotic-A) on growth performance, body composition, antioxidant capacity and immune functions of juvenile starry flounder (Platichthys stellatus). Aquac. Res., 47: 398–408.10.1111/are.12501]Search in Google Scholar
[Wang K., Wang E., Qin Z., Zhou Z., Geng Y., Chen D. (2016 b). Effects of dietary vitamin E deficiency on systematic pathological changes and oxidative stress in fish. Oncotarget, 20: 83869–83879.10.18632/oncotarget.13729535663127911874]Search in Google Scholar
[Wang R-F., An X-P., Wang Y., Qi J.-W., Zhang J., Liu Y.-H., Weng M.-Q., Yang Y.-P., Gao A.-Q. (2020). Effects of polysaccharide from fermented wheat bran on growth performance, muscle composition, digestive enzyme activities and intestinal microbiota in juvenile common carp. Aquacult. Nutr., 26: 1–12.]Search in Google Scholar
[Weatherley A., Gill H. (1989). The role of muscle in determining growth and size in teleost fish. Experientia, 45: 875–878.]Search in Google Scholar
[Zhu T., Corraze G., Plagnes-Juan E., Quillet E., Dupont-Nivet M., Skiba-Cass S. (2018). Regulation of genes related to cholesterol metabolism in rainbow trout (Oncorhynchus mykiss) fed a plant-based diet. Am. J. Physiol. Regul. Integr. Comp. Physiol., 314: R58–R70.]Search in Google Scholar
[Zimmerman A.M.A., Lowery M.S. (1999). Hyperplastic development and hypertrophic growth of muscle fibres in the white seabass (Atractoscion nobilis). J. Exp. Zool., 284: 299–308.]Search in Google Scholar
[Ziółkowska E., Bogucka J., Dankowiakowska A., Rawski M., Mazurkiewicz J., Stanek M. (2020). Effects of a trans-galactooligosaccharide on biochemical blood parameters and intestine morphometric parameters of common carp (Cyprinus carpio L.). Animals, 10: 723.]Search in Google Scholar