1. bookTom 21 (2021): Zeszyt 3 (July 2021)
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
2300-8733
Pierwsze wydanie
25 Nov 2011
Częstotliwość wydawania
4 razy w roku
Języki
Angielski
Otwarty dostęp

Supplementation of Bile Acids and Lipase in Broiler Diets for Better Nutrient Utilization and Performance: Potential Effects and Future Implications – A Review

Data publikacji: 05 Aug 2021
Tom & Zeszyt: Tom 21 (2021) - Zeszyt 3 (July 2021)
Zakres stron: 757 - 787
Otrzymano: 17 May 2020
Przyjęty: 09 Sep 2020
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
2300-8733
Pierwsze wydanie
25 Nov 2011
Częstotliwość wydawania
4 razy w roku
Języki
Angielski

Abe K., Gomi K., Hasegawa F., Machida M.(2006). Impact of Aspergillus oryzae genomics on industrial production of metabolites. Mycopathologia, 162: 143–153. Search in Google Scholar

Abudabos A.(2014). Effect of fat source, energy level and enzyme supplementation and their interactions on broiler performance. S. Afr. J. Anim. Sci., 44: 280–287. Search in Google Scholar

Agellon J.B.(2008). Metabolism and function of bile acids. In: Biochemistry of lipids, lipoproteins and membranes, Vance D.E., Vance J.E. (eds). Elsevier, New York, pp. 423–440.10.1016/B978-044453219-0.50017-9 Search in Google Scholar

Aguilar Y.M., Becerra J.C., Bertot R.R., Peláez J.C., Liu G., Hurtado C.B.(2013). Growth performance, carcass traits and lipid profile of broiler chicks fed with an exogenous emulsifier and increasing levels of energy provided by palm oil. J. Food Agri. Environ., 11: 629–633. Search in Google Scholar

Al-Marzooqi W., Leeson S.(1999). Evaluation of dietary supplements of lipase, detergent, and crude porcine pancreas on fat utilization by young broiler chicks. Poultry Sci., 78: 1561–1566. Search in Google Scholar

Al-Marzooqi W., Leeson S.(2000). Effect of dietary lipase enzyme on gut morphology, gastric motility, and long-term performance of broiler chicks. Poultry Sci., 79: 956–960. Search in Google Scholar

Ali S.F., Chao W., Xiaoli W., Jintian H., Mingfa W., El-Hack M.E.A., Lili Z., Xiang Z., Tian W. (2017). Growth, serum biochemical indices, antioxidant status and meat quality of broiler chickens fed diet supplemented with sodium stearoyl-2 lactylate. Pak. Vet. J., 37: 445–449. Search in Google Scholar

Aloulou A., Rodriguez J.A., Puccinelli D., Mouz N., Leclaire J., Leblond Y., Carrière F. (2007). Purification and biochemical characterization of the LIP2 lipase from Yarrowia lipolytica. Biochimic. Biophys. Acta -Mol. Cell Biol. Lipids, 1771: 228–237. Search in Google Scholar

Alzawqari M., Moghaddam H.N., Kermanshahi H., Raji A.R.(2011). The effect of desiccated ox bile supplementation on performance, fat digestibility, gut morphology and blood chemistry of broiler chickens fed tallow diets. J. Appl. Anim. Res., 39: 169–174. Search in Google Scholar

Anderson I.G., Banister K.E., Haslewood G.A., Cho D., Toekes L.(1980). Bile salts of fishes collected on the Zaïre River Expedition (1974–1975): their chemical nature and its possible significance. Zool. J. Linnean Soc., 68: 41–51. Search in Google Scholar

Andualema B., Gessesse A.(2012). Microbial lipases and their industrial applications. Biotechnology, 11: 100–118. Search in Google Scholar

Antin J., Gibbs J., Holt J., Young R.C., Smith G.P.(1975). Cholecystokinin elicits the complete behavioral sequence of satiety in rats. J. Comp. Physiol. Psychol., 89: 784. Search in Google Scholar

Atteh J., Leeson S.(1985). Influence of age, dietary cholic acid, and calcium levels on performance, utilization of free fatty acids, and bone mineralization in broilers. Poultry Sci., 64: 1959–1971. Search in Google Scholar

Azman M., Ciftci M.(2004). Effects of replacing dietary fat with lecithin on broiler chicken zootechnical performance. Rev. Med. Vet., 155: 445–448. Search in Google Scholar

Baião N.C., Lara L.(2005). Oil and fat in broiler nutrition. Braz. J. Poult. Sci., 7: 129–141. Search in Google Scholar

Bajaj A., Lohan P., Jha P.N., Mehrotra R.(2010). Biodiesel production through lipase catalyzed transesterification: an overview. J. Mol. Catal. B Enzym., 62: 9–14. Search in Google Scholar

Bansal M., Fu Y., Alrubaye B., Abraha M., Almansour A., Gupta A., Liyanage R., Wang H., Hargis B., Sun X.(2020). A secondary bile acid from microbiota metabolism attenuates ileitis and bile acid reduction in subclinical necrotic enteritis in chickens. J. Anim. Sci. Biotechnol., 11: 1–10. Search in Google Scholar

Beauchemin K., Colombatto D., Morgavi D., Yang W.(2003). Use of exogenous fibrolytic enzymes to improve feed utilization by ruminants. J. Anim. Sci., 81: E37–E47. Search in Google Scholar

Becker W.A., Spencer J.V., Mirosh L.W., Verstrate J.A.(1979). Prediction of fat and fat free live weight in broiler chickens using backskin fat, abdominal fat, and live body weight. Poultry Sci., 58: 835–842. Search in Google Scholar

Begley M., Gahan C.G., Hill C.(2005). The interaction between bacteria and bile. FEMS Microbiol. Rev., 29: 625–651. Search in Google Scholar

Benjamin S., Pandey A.(1998). Candida rugosa lipases: molecular biology and versatility in biotechnology. Yeast, 14: 1069–1087. Search in Google Scholar

Bergström S., Danielsson H., Kazuno T.(1960). Bile acids and steroids. 98. The metabolism of bile acids in python and constrictor snakes. J. Biol. Chem., 235: 983–988. Search in Google Scholar

Bontempo V., Comi M., Jiang X., Rebucci R., Caprarulo V., Giromini C., Got-tardo D., Fusi E., Stella S., Tirloni E. (2018). Evaluation of a synthetic emulsifier product supplementation on broiler chicks. Anim. Feed Sci. Technol., 240: 157–164. Search in Google Scholar

Boontiam W., Jung B., Kim Y.(2016). Effects of lysophospholipid supplementation to lower nutrient diets on growth performance, intestinal morphology, and blood metabolites in broiler chickens. Poultry Sci., 96: 593–601. Search in Google Scholar

Bora L., Gohain D., Das R.(2013). Recent advances in production and biotechnological applications of thermostable and alkaline bacterial lipases. J. Chem. Technol. Biot., 88: 1959–1970. Search in Google Scholar

Borgstrom B., Barrowman J., Krabisch L., Lindström M., Lillienau J.(1986). Effects of cholic acid, 7β-hydroxy-and 12β-hydroxy-isocholic acid on bile flow, lipid secretion and bile acid synthesis in the rat. Scand. J. Clin. Lab. Invest., 46: 167–175. Search in Google Scholar

Borrelli G., Trono D.(2015). Recombinant lipases and phospholipases and their use as biocatalysts for industrial applications. Int. J. Mol. Sci., 16: 20774–20840. Search in Google Scholar

BrabcováJ., DemianováZ., Vondrášek J., Jágr M., Zarevúcka M., Palomo J.M. (2013). Highly selective purification of three lipases from Geotrichum candidum 4013 and their characterization and biotechnological applications. J. Mol. Catal. B Enzym., 98: 62–72. Search in Google Scholar

Brenes A., Centeno C., Viveros A., Arija I.(2008). Effect of enzyme addition on the nutritive value of high oleic acid sunflower seeds in chicken diets. Poultry Sci., 87: 2300–2310. Search in Google Scholar

Brígida A.I., Amaral P.F., Coelho M.A., Goncalves L.R.(2014). Lipase from Yarrowia lipolytica: production, characterization and application as an industrial biocatalyst. J. Mol. Catal. B Enzym., 101: 148–158. Search in Google Scholar

Caballero V., Bautista F.M., Campelo J.M., Luna D., Marinas J.M., Romero A.A., Hidalgo J.M., Luque R., Macario A., Giordano G. (2009). Sustainable preparation of a novel glycerol-free biofuel by using pig pancreatic lipase: Partial 1, 3-regiospecific alcoholysis of sunflower oil. Process Biochem., 44: 334–342. Search in Google Scholar

Cantafora A., Alvaro D., Attili A., Di A.B., Anza M., Mantovani A., Angelico M.(1986). Hepatic 3 alpha-dehydrogenation and 7 alpha-hydroxylation of deoxycholic acid in the guinea-pig. Comp. Biochem. Physiol. B Comp. Biochem., 85: 805–810. Search in Google Scholar

Casas-Godoy L., Gasteazoro F., Duquesne S., Bordes F., Marty A., Sandoval G. (2018). Lipases: an overview. Lipases and Phospholipases. Humana Press, New York, pp. 3–38.10.1007/978-1-4939-8672-9_130109644 Search in Google Scholar

Caspary W.F.(1992). Physiology and pathophysiology of intestinal absorption. Am. J. Clin. Nutr., 55: 299S–308S. Search in Google Scholar

Chang S.-W., Shaw J.-F., Shieh C.-J.(2003). Optimization of enzymatically prepared hexyl butyrate by lipozyme IM-77. Food Technol. Biotechnol., 41: 237–242. Search in Google Scholar

Cheah Y., Loh T., Akit H., Kimkool S.(2017). Effect of synthetic emulsifier and natural biosurfactant on feed process and quality of pelletized feed in broiler diet. Braz. J. Poult. Sci., 19: 23–34. Search in Google Scholar

Cho J.H., Zhao P., Kim I.H.(2012). Effects of emulsifier and multi-enzyme in different energy density diet on growth performance, blood profiles, and relative organ weight in broiler chickens. J. Agric. Sci., 4: 161–168. Search in Google Scholar

Classen H.L.(2017). Diet energy and feed intake in chickens. Anim. Feed Sci. Technol., 233: 13–21. Search in Google Scholar

Coello A., Meijide F., Núñez E.R., Tato J.V.(1996). Aggregation behavior of bile salts in aqueous solution. J. Pharm. Sci., 85: 9–15. Search in Google Scholar

Coleman R.(1987). Bile salts and biliary lipids. Biochem. Soc. Trans., 15: 68S–80S. https://www.ncbi.nlm.nih.gov/pubmed/3328715. Search in Google Scholar

Collar C., Martinez J., Andreu P., Armero E.(2000). Effects of enzyme associations on bread dough performance. A response surface analysis/Efectos de las asociaciones enzimáticas sobre la calidad funcional de masas panarias. Análisis de superficies de respuesta. Food Sci. Technol. Int., 6: 217–226. Search in Google Scholar

Conde-Aguilera J.A., Cobo-Ortega C., Tesseraud S., Lessire M., Mercier Y., Van M.J. (2013). Changes in body composition in broilers by a sulfur amino acid deficiency during growth. Poultry Sci., 92: 1266–1275. Search in Google Scholar

Cowieson A., Adeola O.(2005). Carbohydrases, protease, and phytase have an additive beneficial effect in nutritionally marginal diets for broiler chicks. Poultry Sci., 84: 1860–1867. Search in Google Scholar

Dabbou S., Schiavone A., Gai F., Martinez S., Madrid J., Hernandez F., Martínez Marín A.L., Soglia D., Sartore S., Kalmar I.D. (2019). Effect of dietary globin, a natural emulsifier, on the growth performance and digestive efficiency of broiler chickens. Ital. J. Anim. Sci., 18: 530–537. Search in Google Scholar

Danicke S.(2001). Identity and fat quality and content in response to feed enzymes in broilers. Enzymes in Farm Animal Nutrition. ed. CABI Pub, Wallingford, UK.10.1079/9780851993935.0199 Search in Google Scholar

Dantas A., Valério A., Ninow J.L., de Oliveira J.V., de Oliveira D.(2019). Potential application of Thermomyces lanuginosus lipase (TLL) immobilized on nonporous polystyrene particles. Environ. Prog. Sustain. Energy., 38: 608–613. Search in Google Scholar

de Morais Júnior W.G., Maia A.M., Martins P.A., Fernández-Lorente G., Gui-sán J.M., Pessela B.C. (2018). Influence of different immobilization techniques to improve the enantioselectivity of lipase from Geotrichum candidum applied on the resolution of mandelic acid. Mol. Catal., 458: 89–96. Search in Google Scholar

Devlin T.(2006). Textbook of biochemistry with clinical correlations. John Wiley and Sons. New York. Search in Google Scholar

Dhake K.P., Thakare D.D., Bhanage B.M.(2013). Lipase: a potential biocatalyst for the synthesis of valuable flavour and fragrance ester compounds. Flavour Frag. J., 28: 71–83. Search in Google Scholar

Di Ciaula A., Garruti G., Lunardi Baccetto R., Molina-Molina E., Bonfrate L., Wang D.Q., Portincasa P. (2018). Bile acid physiology. Ann. Hepatol., 16: 4–14. Search in Google Scholar

Duncan R.E., Ahmadian M., Jaworski K., Sarkadi-Nagy E., Sul H.S. (2007). Regulation of lipolysis in adipocytes. Annu. Rev. Nutr., 27: 79–101. Search in Google Scholar

Dunnington E.A., Siegel P.(1995). Enzyme activity and organ development in newly hatched chicks selected for high or low eight-week body weight. Poultry Sci., 74: 761–770. Search in Google Scholar

Elkin R.G., Wood K., Hagey L.(1990). Biliary bile acid profiles of domestic fowl as determined by high performance liquid chromatography and fast atom bombardment mass spectrometry. Comp. Biochem. Physiol. B Comp. Biochem., 96: 157–161. Search in Google Scholar

Elzobier M., Ibrahim M.T.E., Elbashier O.M.(2016). Effects of dietary inclusion of fish oil on broiler performance and feed utilization. Int. J. Sci. Technol. Res., 5: 77–89. Search in Google Scholar

Engelking L.R.(2011). Textbook of veterinary physiological chemistry. Academic Press, Elsevier, The Boulevard, Langford Lane, Kidlington, Oxford, UK. Search in Google Scholar

Fallahi P., Habte-Tsion H.M., Rossi W.(2018). Depolymerizating enzymes in human food: bakery, dairy products, and drinks, enzymes in human and animal nutrition. Elsevier, pp. 211–237. Search in Google Scholar

Fascina V., Carrijo A., Souza K., Garcia A., Kiefer C., Sartori J.R. (2009). Soybean oil and beef tallow in starter broiler diets. Braz. J. Poult. Sci., 11: 249–256. Search in Google Scholar

Febel H., Mezes M., Palfy T., Herman A., Gundel J., Lugasi A., Balogh K., Koc-sis I., Blazovics A. (2008). Effect of dietary fatty acid pattern on growth, body fat composition and antioxidant parameters in broilers. J. Anim. Physiol. Anim. Nutr., 92: 369–376. Search in Google Scholar

Fernandez-Lafuente R.(2010). Lipase from Thermomyces lanuginosus: uses and prospects as an industrial biocatalyst. J. Mol. Catal. B Enzym., 62: 197–212. Search in Google Scholar

Fickers P., Marty A., Nicaud J.M.(2011). The lipases from Yarrowia lipolytica: genetics, production, regulation, biochemical characterization and biotechnological applications. Biotechnol. Adv., 29: 632–644. Search in Google Scholar

Firman J.D., Kamyab A., Leigh H.(2008). Comparison of fat sources in rations of broilers from hatch to market. Int. J. Poultry Sci., 7: 1152–1155. Search in Google Scholar

Franken L.P.G., Marcon N.S., Treichel H., Oliveira D., Freire D.M., Dariva C., De-stain J., Oliveira J.V. (2010). Effect of treatment with compressed propane on lipases hydrolytic activity. Food Bioproc. Tech., 3: 511–520. Search in Google Scholar

Freeman C.(1984). The digestion, absorption and transport of fats: non-ruminants. Proc. Easter School in Agricultural Science, University of Nottingham.10.1016/B978-0-408-10864-5.50011-5 Search in Google Scholar

García-Silvera E.E., Martínez-Morales F., Bertrand B., Morales-Guzmán D., Rosas-Galván N.S., León-Rodríguez R., Trejo-Hernández M.R. (2018). Production and application of a thermostable lipase from Serratia marcescens in detergent formulation and biodiesel production. Biotechnol. Appl. Biochem., 65: 156–172. Search in Google Scholar

Garrett R., Young R.(1975). Effect of micelle formation on the absorption of neutral fat and fatty acids by the chicken. J. Nutr., 105: 827–838. Search in Google Scholar

Garruti G., Wang H.H., Bonfrate L., de Bari O., Wang D.Q.-H., Portincasa P.(2012). A pleiotropic role for the orphan nuclear receptor small heterodimer partner in lipid homeostasis and metabolic pathways. J. Lipids, 22.10.1155/2012/304292334699022577560 Search in Google Scholar

Ge X., Wang A., Ying Z., Zhang L., Su W., Cheng K., Feng C., Zhou Y., Zhang L., Wang T.(2018). Effects of diets with different energy and bile acids levels on growth performance and lipid metabolism in broilers. Poultry Sci., 98: 887–895. Search in Google Scholar

Goto T., Holzinger F., Hagey L., CerrèC., Ton-Nu H., Schteingart C., Stein-bach J., Shneider B., Hofmann A. (2003). Physicochemical and physiological properties of 5α-cyprinol sulfate, the toxic bile salt of cyprinid fish. J. Lipid Res., 44: 1643–1651. Search in Google Scholar

Gu X., Li D.(2003). Fat nutrition and metabolism in piglets: a review. Anim. Feed Sci. Technol., 109: 151–170. Search in Google Scholar

Guerreiro Neto A., Pezzato A.C., Sartori J.R., Mori C., Cruz V., Fascina V., Pin-heiro D., Madeira L., Gonçalvez J. (2011). Emulsifier in broiler diets containing different fat sources. Braz. J. Poult. Sci., 13: 119–125. Search in Google Scholar

Guertin F., Loranger A., Lepage G., Roy C.C., Yousef I.M., Domingo N., Chanus-sot F., Lafont H., Tuchweber B. (1995). Bile formation and hepatic plasma membrane composition in guinea-pigs and rats. Comp. Biochem. Physiol. Part B: Biochem. Mol. Biol., 111: 523–531. Search in Google Scholar

Gunstone F.D.(2012). Fatty acid and lipid chemistry. Springer. Search in Google Scholar

Hackett S.J., Kimball R.T., Reddy S., Bowie R.C., Braun E.L., Braun M.J., Choj-nowski J.L., Cox W.A., Han K.-L., Harshman J. (2008). A phylogenomic study of birds reveals their evolutionary history. Science, 320: 1763–1768. Search in Google Scholar

Hagey L.R., Schteingart C.D., Ton-Nu H.-T., Hofmann A.F.(1994). Biliary bile acids of fruit pigeons and doves (Columbiformes): presence of 1-beta-hydroxychenodeoxycholic acid and conjugation with glycine as well as taurine. J. Lipid Res., 35: 2041–2048. Search in Google Scholar

Hagey L.R., Gavrilkina M.A., Hofmann A.F.(1997). Age-related changes in the biliary bile acid composition of bovids. Can. J. Zool., 75: 1193–1201. Search in Google Scholar

Hagey L.R., Møller P.R., Hofmann A.F., Krasowski M.D.(2010). Diversity of bile salts in fish and amphibians: evolution of a complex biochemical pathway. Physiol. Biochem. Zool. 83: 308–321. Search in Google Scholar

Hamosh M., Bitman J., Liao T.H., Mehta N., Buczek R., Wood D., Grylack L., Hamosh P.(1989). Gastric lipolysis and fat absorption in preterm infants: effect of medium-chain triglyceride or long-chain triglyceride-containing formulas. Pediatrics, 83: 86–92. Search in Google Scholar

He D., Barnes S., Falany C.N.(2003). Rat liver bile acid CoA: amino acid N-acyltransferase expression, characterization, and peroxisomal localization. J. Lipid Res., 44: 2242–2249. Search in Google Scholar

Hellou J., King A., Ni I.(1988). Bile acids from the harp seals, Phoca groenlandica. Comp. Biochem. Physiol. A Comp. Physiol., 89: 211–214. Search in Google Scholar

Hemati Matin H., Shariatmadari F., Karimi Torshizi M., Chiba L.(2016). In vitro bile acid-binding capacity of dietary fibre sources and their effects with bile acid on broiler chicken performance and lipid digestibility. Brit. Poultry Sci., 57: 348–357. Search in Google Scholar

Hermier D.(1997). Lipoprotein metabolism and fattening in poultry. J. Nutr., 127: 805S–808S. Search in Google Scholar

Hofmann A.F.(1999). Bile acids: the good, the bad, and the ugly. Physiology, 14: 24–29. Search in Google Scholar

Hofmann A.F., Hagey L.R.(2014). Key discoveries in bile acid chemistry and biology and their clinical applications: history of the last eight decades. J. Lipid Res., 55: 1553–1595. Search in Google Scholar

Hofmann A.F., Mosbach E.H.(1964). Identification of allodeoxycholic acid as the major component of gallstones induced in the rabbit by 5α-cholestan-3β-ol. J. Biol. Chem., 239: 2813–2821. Search in Google Scholar

Hofmann A.F., Hagey L.R., Krasowski M.D.(2010). Bile salts of vertebrates: structural variation and possible evolutionary significance. J. Lipid Res., 51: 226–246. Search in Google Scholar

Hoshita T.(1967). Stero-bile acids and bile alcohols. J. Biochem., 61: 440–449. Search in Google Scholar

Hosseini S.M., Nourmohammadi R., Nazarizadeh H., Latshaw J.D.(2018). Effects of lysolecithin and xylanase supplementation on the growth performance, nutrient digestibility and lipogenic gene expression in broilers fed low-energy wheat-based diets. J. Anim. Physiol. Anim. Nutr., 102: 1564–1573. Search in Google Scholar

Hu Y., Lan D., Zhu Y., Pang H., Mu X., Hu X.(2018). Effect of diets with different energy and lipase levels on performance, digestibility and carcass trait in broilers. Asian-Australas. J. Anim. Sci., 31: 1275–1284. Search in Google Scholar

Huang J., Yang D., Gao S., Wang T.(2008). Effects of soy-lecithin on lipid metabolism and hepatic expression of lipogenic genes in broiler chickens. Livest. Sci., 118: 53–60. Search in Google Scholar

Huang W.-C., Chen C.-Y., Wu S.-J.(2017). Almond skin polyphenol extract inhibits inflammation and promotes lipolysis in differentiated 3T3-L1 adipocytes. J. Med. Food, 20: 103–109. Search in Google Scholar

Huhtanen C.(1979). Bile acid inhibition of Clostridium botulinum. Appl. Environ. Microbiol., 38: 216–218. Search in Google Scholar

Hurwitz S., Bar A., Katz M., Sklan D., Budowski P.(1973). Absorption and secretion of fatty acids and bile acids in the intestine of the laying fowl. J. Nutr., 103: 543–547. Search in Google Scholar

Jaeger K.-E., Ransac S., Dijkstra B.W., Colson C., van Heuvel M., Misset O. (1994). Bacterial lipases. FEMS Microbiol. Rev., 15: 29–63. Search in Google Scholar

Jo J.C., Kim S.-J., Kim H.K.(2014). Transesterification of plant oils using Staphylococcus haemolyticus L62 lipase displayed on Escherichia coli cell surface using the OmpA signal peptide and EstAβ8 anchoring motif. Enzym. Microb. Tech., 67: 32–39. Search in Google Scholar

Johnson E.A.(2013). Biotechnology of non-Saccharomyces yeasts – the ascomycetes. Appl. Microbiol. Biotechnol., 97: 503–517. Search in Google Scholar

Kakiyama G., Iida T., Yoshimoto A., Goto T., Mano N., Goto J., Nambara T., Hagey L.R., Hofmann A.F. (2004). Chemical synthesis of (22E)-3α, 6β, 7β-trihydroxy-5β-chol-22-en-24-oic acid and its taurine and glycine conjugates a major bile acid in the rat. J. Lipid Res., 45: 567–573. Search in Google Scholar

Kakiyama G., Iida T., Goto T., Mano N., Goto J., Nambara T., Hagey L.R., Schte-ingart C.D., Hofmann A.F. (2006). Identification of a novel bile acid in swans, tree ducks, and geese: 3α, 7α, 15α-trihydroxy-5β-cholan-24-oic acid. J. Lipid Res., 47: 1551–1558. Search in Google Scholar

Kakiyama G., Tamegai H., Iida T., Mitamura K., Ikegawa S., Goto T., Mano N., Goto J., Holz P., Hagey L.R. (2007). Isolation and chemical synthesis of a major, novel biliary bile acid in the common wombat (Vombatus ursinus): 15α-hydroxylithocholic acid. J. Lipid Res., 48: 2682–2692. Search in Google Scholar

Kallner A., Knutsson L., Larsen B., Dumanovic J.(1967). On the biosynthesis and metabolism of allodeoxycholic acid in the rat. Acta Chem. Scand., 21: 315–321. Search in Google Scholar

Kamiya S., Nagino M., Kanazawa H., Komatsu S., Mayumi T., Takagi K., Asa-hara T., Nomoto K., Tanaka R., Nimura Y. (2004). The value of bile replacement during external biliary drainage: an analysis of intestinal permeability, integrity, and microflora. Ann. Surg., 239: 510. Search in Google Scholar

Kapoor M., Gupta M.N.(2012). Lipase promiscuity and its biochemical applications. Process Biochem., 47: 555–569. Search in Google Scholar

Knarreborg A., Jensen S.K., Engberg R.M.(2003). Pancreatic lipase activity as influenced by unconjugated bile acids and pH, measured in vitro and in vivo. J. Nutr. Biochem., 14: 259–265. Search in Google Scholar

Kocsar L., Bertok L., Varteresz V.(1969). Effect of bile acids on the intestinal absorption of endotoxin in rats. J. Bacteriol., 100: 220–223. Search in Google Scholar

Koop I., Schindler M., Bosshammer A., Scheibner J., Stange E., Koop H.(1996). Physiological control of cholecystokinin release and pancreatic enzyme secretion by intraduodenal bile acids. Gut, 39: 661–667. Search in Google Scholar

KrogdahlÅ.(1985). Digestion and absorption of lipids in poultry. J. Nutr., 115: 675–685. Search in Google Scholar

KrogdahlÅ., Sell J.L.(1989). Influence of age on lipase, amylase, and protease activities in pancreatic tissue and intestinal contents of young turkeys. Poultry Sci., 68: 1561–1568. Search in Google Scholar

Kumar S., Mathur A., Singh V., Nandy S., Khare S.K., Negi S.(2012). Bioremediation of waste cooking oil using a novel lipase produced by Penicillium chrysogenum SNP5 grown in solid medium containing waste grease. Bioresour. Technol., 120: 300–304. Search in Google Scholar

Kuramoto T., Moriwaki S., Kawamoto K., Hoshita T.(1987). Intestinal absorption and metabolism of homourso deoxycholic acid in rats. J. Pharmacobio-Dyn., 10: 309–316. Search in Google Scholar

Kurogi K., Krasowski M.D., Injeti E., Liu M.-Y., Williams F.E., Sakakibara Y., Suiko M., Liu M.-C. (2011). A comparative study of the sulfation of bile acids and a bile alcohol by the Zebra danio (Danio rerio) and human cytosolic sulfotransferases (SULTs). J. Steroid. Biochem., 127: 307–314. Search in Google Scholar

Lai W., Cao A., Li J., Zhang W., Zhang L.(2018 a). Effect of high dose of bile acids supplementation in broiler feed on growth performance, clinical blood metabolites and organ development. J. Appl. Poultry Res., 27: 532–539.10.3382/japr/pfy040 Search in Google Scholar

Lai W., Huang W., Dong B., Cao A., Zhang W., Li J., Wu H., Zhang L.(2018 b). Effects of dietary supplemental bile acids on performance, carcass characteristics, serum lipid metabolites and intestinal enzyme activities of broiler chickens. Poultry Sci., 97: 196–202.10.3382/ps/pex28829136214 Search in Google Scholar

Lammasak K., Kijparkorn S., Angkanaporn K.(2018). Porcine bile powder supplementation of a high fat broiler diet in relation to growth performance and nutrient digestion. Anim. Prod. Sci., 59: 1310–1317. Search in Google Scholar

Lang D., Hofmann B., Haalck L., Hecht H.-J., Spener F., Schmid R.D., Schom-burg D.(1996). Crystal structure of a bacterial lipase from Chromobacterium viscosum ATCC 6918 refined at 1.6 Å resolution. J. Mol. Biol., 259: 704–717. Search in Google Scholar

Lee S., Lester R., Pyrek J.S.(1987). Vulpecholic acid (1 alpha, 3 alpha, 7 alpha-trihydroxy-5 beta-cholan-24-oic acid): a novel bile acid of a marsupial, Trichosurus vulpecula (Lesson). J. Lipid Res., 28: 19–31. Search in Google Scholar

Leeson S., Summers J.(2001). Scoot’s Nutrition of the Chicken, Guelph, Canada. Search in Google Scholar

Leeson S., Summers J.(2005). Commercial Poultry Production. University Books, Guelph, Ontario, Canada. Search in Google Scholar

Lefebvre P., Cariou B., Lien F., Kuipers F., Staels B.(2009). Role of bile acids and bile acid receptors in metabolic regulation. Physiol. Rev., 89: 147–191. Search in Google Scholar

Lehninger A.L., Nelson D.L., Cox M.M., Cox M.M. (2005). Lehninger Principles of Biochemistry. 4th ed., New York. Search in Google Scholar

Liao T.H., Hamosh P., Hamosh M.(1984). Fat digestion by lingual lipase: mechanism of lipolysis in the stomach and upper small intestine. Pediatr. Res., 18: 402. Search in Google Scholar

Lindsay O., March B.(1967). Intestinal absorption of bile salts in the cockerel. Poultry Sci., 46: 164–168. Search in Google Scholar

Lisbona F., Jimenez R., Esteller A., Lopez M.(1981). Basal biliary secretion in conscious chicken and role of enterohepatic circulation. Comp. Biochem. Physiol. Part A: Physiol., 69: 341–344. Search in Google Scholar

Liu W.-C., Kim I.-H.(2017). Effects of dietary xylanase supplementation on performance and functional digestive parameters in broilers fed wheat-based diets. Poultry Sci., 96: 566–573. Search in Google Scholar

Livezey B.C., Zusi R.L.(2007). Higher-order phylogeny of modern birds (Theropoda, Aves: Neornithes) based on comparative anatomy. II. Analysis and discussion. Zool. J. Linnean Soc., 149: 1–95. Search in Google Scholar

Maiorka A., Santin E., Silva A., Routman K., Pizauro Jr J., Macari M.(2004). Effect of broiler breeder age on pancreas enzymes activity and digestive tract weight of embryos and chicks. Braz. J. Poult. Sci., 6: 19–22. Search in Google Scholar

Maisonnier S., Gomez J., Bree A., Berri C., Baeza E., Carre B.(2003). Effects of microflora status, dietary bile salts and guar gum on lipid digestibility, intestinal bile salts, and histomorphology in broiler chickens. Poultry Sci., 82: 805–814. Search in Google Scholar

Marin J.J.(2008). How we have learned about the complexity of physiology, pathobiology and pharmacology of bile acids and biliary secretion. World J. Gastroentero., 14: 5617–5619. Search in Google Scholar

Marin J.J.M.J., Macias R.M.R.I., Briz O.B.O., Banales J.B.J.M., Monte M.M.M.J. (2016). Bile acids in physiology, pathology and pharmacology. Curr. Drug Metab., 17: 4–29. Search in Google Scholar

Martin C.R.(2015). Lipids and fatty acids in the preterm infant, part 1: basic mechanisms of delivery, hydrolysis, and bioavailability. NeoReviews, 16: e160–e168. Search in Google Scholar

Mateos G.G., Sell J.L., Eastwood J.A.(1982). Rate of food passage (transit time) as influenced by level of supplemental fat. Poultry Sci., 61: 94–100. Search in Google Scholar

Mead J.F.(1986). Lipids: Chemistry, Biochemistry, and Nutrition. Plenum Press. Search in Google Scholar

Meng X., Slominski B., Guenter W.(2004). The effect of fat type, carbohydrase, and lipase addition on growth performance and nutrient utilization of young broilers fed wheat-based diets. Poultry Sci., 83: 1718–1727. Search in Google Scholar

Merrill J., Schteingart C., Hagey L., Peng Y., Ton-Nu H., Frick E., Jirsa M., Hofmann A. (1996). Hepatic biotransformation in rodents and physicochemical properties of 23 (R)-hydroxychenodeoxycholic acid, a natural alpha-hydroxy bile acid. J. Lipid Res., 37: 98–112. Search in Google Scholar

Meyer A., Zardoya R.(2003). Recent advances in the (molecular) phylogeny of vertebrates. Annu. Rev. Ecol. Evol. Syst., 34: 311–338. Search in Google Scholar

Miller G., Miller N.(1975). Plasma-high-density-lipoprotein concentration and development of ischaemic heart-disease. Lancet, 305: 16–19. Search in Google Scholar

Minning S., Schmidt-Dannert C., Schmid R.D.(1998). Functional expression of Rhizopus oryzae lipase in Pichia pastoris: high-level production and some properties. J. Biotechnol., 66: 147–156. Search in Google Scholar

Mohammadigheisar M., Kim H.S., Kim I.H.(2018). Effect of inclusion of lysolecithin or multi-enzyme in low energy diet of broiler chickens. J. Appl. Anim. Res., 46: 1198–1201. Search in Google Scholar

Monte M.J., Marin J.J., Antelo A., Vazquez-Tato J.(2009). Bile acids: chemistry, physiology, and pathophysiology. World J. Gastroentero., 15: 804–816. Search in Google Scholar

Moreau J., Bouisson M., Saint-Marc-Girardin M., Pignal F., Bommelaer G., Ribet A. (1988). Comparison of fungal lipase and pancreatic lipase in exocrine pancreatic insufficiency in man. Study of their in vitro properties and intraduodenal bioavailability. Gastroen. Clin. Biol., 12: 787–792. Search in Google Scholar

Moschetta A., Xu F., Hagey L.R., van Berge-Henegouwen G.P., Van Erpecum K.J., Brouwers J.F., Cohen J.C., Bierman M., Hobbs H.H., Steinbach J.H. (2005). A phylogenetic survey of biliary lipids in vertebrates. J. Lipid Res., 46: 2221–2232. Search in Google Scholar

Mugler D., Cunningham F.(1972). Factors affecting poultry meat color – a review. Worlds Poultry Sci. J., 28: 400–406. Search in Google Scholar

Murphy W.J., Eizirik E., Johnson W.E., Zhang Y.P., Ryder O.A., O’Brien S.J. (2001). Molecular phylogenetics and the origins of placental mammals. Nature, 409: 614–618. Search in Google Scholar

Nagargoje S., Dhumal M., Nikam M., Khose K.(2016). Effect of crude soy lecithin with or without lipase on performance and carcass traits, meat keeping quality and economics of broiler chicken. Int. J. Livest. Res., 6: 46–54. Search in Google Scholar

Negi S.(2019). Lipases: a promising tool for food industry, green bio-processes. Springer, pp. 181–198. Search in Google Scholar

Nir I., Nitsan Z., Mahagna M.(1993). Comparative growth and development of the digestive organs and of some enzymes in broiler and egg type chicks after hatching. Brit. Poultry Sci., 34: 523–532. Search in Google Scholar

NRC(1994). Nutrient Requirements of Poultry. 9th rev. ed., Washington DC, National Academy of Sciences. Search in Google Scholar

O’Connor C.J., Bang K.-A., Taylor C.M., Brimble M.A.(2001). Determining the regio- and typo-selectivity of calf pregastric lipase. J. Mol. Catal. B Enzym., 16: 147–157. Search in Google Scholar

Pandey A., Benjamin S., Soccol C.R., Nigam P., Krieger N., Soccol V.T. (1999). The realm of microbial lipases in biotechnology. Biotechnol. Appl. Bioc., 29: 119–131. Search in Google Scholar

Pantaya D., Widayanti A., Jadmiko P., Utami M.M.D.(2020). Effect of bile acid supplementation in broiler feed on performance, carcass, cholesterol, triglycerides and blood glucose. In IOP Conference Series: Earth and Environmental Science, Indonesia, 411: 012041. Search in Google Scholar

Parsaie S., Shariatmadari F., Zamiri M., Khajeh K.(2007). Influence of wheat-based diets supplemented with xylanase, bile acid and antibiotics on performance, digestive tract measurements and gut morphology of broilers compared with a maize-based diet. Brit. Poultry Sci., 48: 594–600. Search in Google Scholar

Pedersen J.I., Gustafsson J.(1980). Conversion of 3α, 7α, 12α-trihydroxy-5β-cholestanoic acid into cholic acid by rat liver peroxisomes. FEBS Lett., 121: 345–348. Search in Google Scholar

Pérez M.M., Gonçalves E.C.S., Vici A.C., Salgado J.C.S., de Moraes M.d.L.T.(2019). Fungal lipases: versatile tools for white biotechnology, recent advancement in white biotechnology through fungi. Springer, pp. 361–404. Search in Google Scholar

Piekarski A., Decuypere E., Buyse J., Dridi S.(2016). Chenodeoxycholic acid reduces feed intake and modulates the expression of hypothalamic neuropeptides and hepatic lipogenic genes in broiler chickens. Gen. Comp. Endocrinol., 229: 74–83. Search in Google Scholar

Pleiss J., Fischer M., Schmid R.D.(1998). Anatomy of lipase binding sites: the scissile fatty acid binding site. Chem. Phys. Lipids, 93: 67–80. Search in Google Scholar

Polin D., Wing T.L., Ki P., Pell K.(1980). The effect of bile acids and lipase on absorption of tallow in young chicks. Poultry Sci., 59: 2738–2743. Search in Google Scholar

Pond W.G., Church D.C., Pond K.R., Schoknecht P.A. (2004). Basic animal nutrition and feeding. 5th ed. John Wiley and Sons. Search in Google Scholar

Prawitt J., Caron S., Staels B.(2011). Bile acid metabolism and the pathogenesis of type 2 diabetes. Curr. Diabetes Rep., 11: 160–166. Search in Google Scholar

PrimožičM., KavčičS., KnezŽ., Leitgeb M.(2016). Enzyme-catalyzed esterification of d, l-lactic acid in different SCF/IL media. J. Supercrit. Fluids, 107: 414–421. Search in Google Scholar

Rashid F.A.A., Rahim R.A., Ibrahim D., Balan A., Bakar N.M.A.(2013). Purification and properties of thermostable lipase from a thermophilic bacterium, Bacillus licheniformis IBRL-CHS2. J. Pure Appl. Microbio., 7: 1635–1645. Search in Google Scholar

Ridgway N., Mc Leod R.(2016). Biochemistry of lipids, lipoproteins and membranes. Elsevier. Search in Google Scholar

Ridlon J.M., Kang D.-J., Hylemon P.B. (2006). Bile salt biotransformations by human intestinal bacteria. J. Lipid Res., 47: 241–259. Search in Google Scholar

Rios N.S., Pinheiro B.B., Pinheiro M.P., Bezerra R.M., dos Santos J.C.S., Gon-çalves L.R.B. (2018). Biotechnological potential of lipases from Pseudomonas: sources, properties and applications. Process Biochem., 75: 99–120. Search in Google Scholar

Rodrigues C., Kren B.T., Steer C.J., Setchell K.(1996). Formation of delta 22-bile acids in rats is not gender specific and occurs in the peroxisome. J. Lipid Res., 37: 540–550. Search in Google Scholar

Rossi S.S., Converse J.L., Hofmann A.(1987). High pressure liquid chromatographic analysis of conjugated bile acids in human bile: simultaneous resolution of sulfated and unsulfated lithocholyl amidates and the common conjugated bile acids. J. Lipid Res., 28: 589–595. Search in Google Scholar

Russell D.W.(2009). Fifty years of advances in bile acid synthesis and metabolism. J. Lipid Res., 50: S120–S125. Search in Google Scholar

Salaberría F., Palla C., Carrín M.E.(2017). Hydrolytic activity of castor bean powder: effect of gum arabic, lipase and oil concentrations. J. Am. Oil. Chem. Soc., 94: 741–745. Search in Google Scholar

Saleh A.A., Amber K.A., Mousa M.M., Nada A.L., Awad W., Dawood M.A., El-Mo-neim A.E., Ebeid T.A., Abdel-Daim M.M. (2020). A mixture of exogenous emulsifiers increased the acceptance of broilers to low energy diets: Growth performance, blood chemistry, and fatty acids traits. Animal, 10: 437. Search in Google Scholar

Sánchez M., Prim N., Rández-Gil F., Pastor F., Diaz P.(2002). Engineering of baker’s yeasts, E. coli and Bacillus hosts for the production of Bacillus subtilis Lipase A. Biotechnol. Bioeng., 78: 339–345. Search in Google Scholar

Sanyal A.J., Hirsch J.I., Moore E.W.(1994). Premicellar taurocholate enhances calcium uptake from all regions of rat small intestine. Gastroenterology, 106: 866–874. Search in Google Scholar

Sanz M., Lopez-Bote C.J., Menoyo D., Bautista J.M.(2000). Abdominal fat deposition and fatty acid synthesis are lower and β-oxidation is higher in broiler chickens fed diets containing unsaturated rather than saturated fat. J. Nutr., 130: 3034–3037. Search in Google Scholar

Sarica S., Ciftci A., Demir E., Kilinc K., Yildirim Y.(2005). Use of an antibiotic growth promoter and two herbal natural feed additives with and without exogenous enzymes in wheat based broiler diets. S. Afr. J. Anim. Sci., 35: 61–72. Search in Google Scholar

Savory C., Gentle M.(1980). Intravenous injections of cholecystokinin and caerulein suppress food intake in domestic fowls. Experientia, 36: 1191–1192. Search in Google Scholar

Scanes C.G.(2015). Sturkie’s avian physiology. 6th ed. Academic Press, Elsevier, London. Search in Google Scholar

Sharma S., Kanwar S.S.(2014). Organic solvent tolerant lipases and applications. Sci. World J., 15 pp., http://dx.doi.org/10.1155/2014/62525810.1155/2014/625258392937824672342 Search in Google Scholar

Sheen-Chen S.-M., Chen H.-S., Ho H.-T., Chen W.-J., Sheen C.-C., Eng H.-L.(2002). Effect of bile acid replacement on endotoxin-induced tumor necrosis factor – a production in obstructive jaundice. World J. Surg., 26: 448–450. Search in Google Scholar

Siyal F., Babazadeh D., Wang C., Arain M., Saeed M., Ayasan T., Zhang L., Wang T. (2017). Emulsifiers in the poultry industry. Worlds Poultry Sci. J., 73: 611–620. Search in Google Scholar

Sklan D.(1979). Digestion and absorption of lipids in chicks fed triglycerides or free fatty acids: synthesis of monoglycerides in the intestine. Poultry Sci., 58: 885–889. Search in Google Scholar

Soccol C.R., Vandenberghe L.P.(2003). Overview of applied solid-state fermentation in Brazil. Biochem. Eng. J., 13: 205–218. Search in Google Scholar

Thomas C., Pellicciari R., Pruzanski M., Auwerx J., Schoonjans K. (2008). Targeting bile-acid signalling for metabolic diseases. Nat. Rev. Drug Discov., 7: 678–693. Search in Google Scholar

Thomas V.G., Mainguy S.K., Prevett J.P.(1983). Predicting fat content of geese from abdominal fat weight. J. Wildl. Manage., 47: 1115–1119. Search in Google Scholar

Upadhaya S., Lee J.S., Jung K.J., Kim I.(2018). Influence of emulsifier blends having different hydrophilic-lipophilic balance value on growth performance, nutrient digestibility, serum lipid profiles, and meat quality of broilers. Poultry Sci., 97: 255–261. Search in Google Scholar

Vidal N., Hedges S.B.(2009). The molecular evolutionary tree of lizards, snakes, and amphisbaenians. C. R. Biol., 332: 129–139. Search in Google Scholar

Villeneuve P., Pina M., Graille J.(1996). Determination of pregastric lipase specificity in young ruminants. Chem. Phys. Lipids, 83: 161–168. Search in Google Scholar

Wang D.Q.-H., Tazuma S., Cohen D.E., Carey M.C.(2003). Feeding natural hydrophilic bile acids inhibits intestinal cholesterol absorption: studies in the gallstone-susceptible mouse. Am. J. Physiol. Gastrointest. Liver. Physiol., 285: G494–G502. Search in Google Scholar

Wang Y., Yan J., Zhang X., Han B.(2018). Tolerance properties and growth performance assessment of Yarrowia lipolytic lipase in broilers. J. Appl. Anim. Res., 46: 486–491. Search in Google Scholar

Washizu T., Tomoda I., Kaneko J.J.(1991). Serum bile acid composition of the dog, cow, horse and human. J. Vet. Med. Sci., 53: 81–86. Search in Google Scholar

Watanabe M., Houten S.M., Mataki C., Christoffolete M.A., Kim B.W., Sato H., Messaddeq N., Harney J.W., Ezaki O., Kodama T. (2006). Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature, 439: 484–489. Search in Google Scholar

Webling D., Holdsworth E.(1965). The effect of bile, bile acids and detergents on calcium absorption in the chick. Biochem. J., 97: 408–421. Search in Google Scholar

Wiseman J., Lewis C.(1998). Influence of dietary energy and nutrient concentration on the growth of body weight and of carcass components of broiler chickens. J. Agric. Sci. 131: 361–371. Search in Google Scholar

Wiseman J., Salvador F.(1989). Influence of age, chemical composition and rate of inclusion on the apparent metabolisable energy of fats fed to broiler chicks. Brit. Poultry Sci., 30: 653–662. Search in Google Scholar

Wiseman J., Salvador F., Craigon J.(1991). Prediction of the apparent metabolizable energy content of fats fed to broiler chickens. Poultry Sci., 70: 1527–1533. Search in Google Scholar

Wu G.(2018). Principles of animal nutrition. 1st ed. CRC Press, Boca Raton, Florida. Search in Google Scholar

Xiao Z., Hou X., Lyu X., Zhao J.-Y., Xi L., Li J., Lu J.R.(2015). Enzymatic synthesis of aroma acetoin fatty acid esters by immobilized Candida antarctica lipase B. Biotechnol. Lett., 37: 1671–1677. Search in Google Scholar

Yu X.-W., Wang L.-L., Xu Y.(2009). Rhizopus chinensis lipase: gene cloning, expression in Pichia pastoris and properties. J. Mol. Catal. B Enzym., 57: 304–311. Search in Google Scholar

Zaefarian F., Abdollahi M.R., Cowieson A., Ravindran V. (2019). Avian liver: The forgotten organ. Animal, 9: 63. Search in Google Scholar

Zampiga M., Meluzzi A., Sirri F.(2016). Effect of dietary supplementation of lysophospholipids on productive performance, nutrient digestibility and carcass quality traits of broiler chickens. Ital. J. Anim. Sci., 15: 521–528. Search in Google Scholar

Zechner R., Zimmermann R., Eichmann T.O., Kohlwein S.D., Haemmerle G., Lass A., Madeo F. (2012). Fat signals – lipases and lipolysis in lipid metabolism and signaling. Cell Metab., 15: 279–291. Search in Google Scholar

Zentler-Munro P., Assoufi B., Balasubramanian K., Cornell S., Benoliel D., Northfield T., Hodson M. (1992). Therapeutic potential and clinical efficacy of acid-resistant fungal lipase in the treatment of pancreatic steatorrhoea due to cystic fibrosis. Pancreas, 7: 311–319. Search in Google Scholar

Zhang B., Haitao L., Zhao D., Guo Y., Barri A.(2011). Effect of fat type and lysophosphatidylcholine addition to broiler diets on performance, apparent digestibility of fatty acids, and apparent metabolizable energy content. Anim. Feed Sci. Technol., 163: 177–184. Search in Google Scholar

Zhang W., Yan C., Shen J., Wei R., Gao Y., Miao A., Xiao L., Yang L.(2019). Characterization of aerobic denitrifying bacterium Pseudomonas mendocina strain GL6 and its potential application in wastewater treatment plant effluent. Int. J. Environ. Res. Public Health, 16: 364–377. Search in Google Scholar

Zhao P., Kim I.(2017). Effect of diets with different energy and lysophospholipids levels on performance, nutrient metabolism, and body composition in broilers. Poultry Sci., 96: 1341–1347. Search in Google Scholar

Zheng J., Xie B.-H., Chen Y.-L., Cao J.-F., Yang Y., Guan Z., He Y.-H.(2014). Direct asymmetric aldol reactions catalyzed by lipase from porcine pancreas. Z. Naturforsch. C., 69: 170–180. Search in Google Scholar

Zhu Q.-F., Huang J., Yang D.-D., Wang T.(2008). Effects of soybean lecithin supplementation on production performance, carcass quality and serum biochemical parameters in broilers. Acta Ecol. Anim. Domast., 5. http://en.cnki.com.cn/Article_en/CJFDTotal-JCST200805011.htm Search in Google Scholar

Zin N.B.M., Yusof B.M., Oslan S.N., Wasoh H., Tan J.S., Ariff A.B., Halim M.(2017). Utilization of acid pre-treated coconut dregs as a substrate for production of detergent compatible lipase by Bacillus stratosphericus. AMB Express, 7: 131–143. Search in Google Scholar

Polecane artykuły z Trend MD

Zaplanuj zdalną konferencję ze Sciendo