1. bookTom 21 (2021): Zeszyt 3 (July 2021)
Informacje o czasopiśmie
Pierwsze wydanie
25 Nov 2011
Częstotliwość wydawania
4 razy w roku
Otwarty dostęp

Genome-wide selection of discriminant SNP markers for breed assignment in indigenous sheep breeds

Data publikacji: 05 Aug 2021
Tom & Zeszyt: Tom 21 (2021) - Zeszyt 3 (July 2021)
Zakres stron: 807 - 831
Otrzymano: 28 Feb 2020
Przyjęty: 09 Sep 2020
Informacje o czasopiśmie
Pierwsze wydanie
25 Nov 2011
Częstotliwość wydawania
4 razy w roku

Allen A.R., Taylor M., Mc Keown B., Curry A.I., Lavery J.F., Mitchell A., Harts-horne D., Fries R., Skuce R.A.(2010). Compilation of a panel of informative single nucleotide polymorphisms for bovine identification in the northern Irish cattle population. BMC Genet., 11: 1–8. Search in Google Scholar

Baba K., Shibata R., Sibuya M.(2004). Partial correlation and conditional correlation as measures of conditional independence. Aust. New Zeal. J. Stat., 46: 657–664. Search in Google Scholar

Bertolini F., Galimberti G., Schiavo G., Mastrangelo S., Di Gerlando R., Stril-lacci M.G., Bagnato A., Portolano B., Fontanesi L.(2018). Preselection statistics and Random Forest classification identify population informative single nucleotide polymorphisms in cosmopolitan and autochthonous cattle breeds. Animal, 12: 12–19. Search in Google Scholar

Bowcock A.M., Ruiz-Linares A., Tomfohrde J., Minch E., Kidd J.R., Cavalli-Sforza L.L.(1994). High resolution of human evolutionary trees with polymorphic microsatellites. Nature, 368: 455–457. Search in Google Scholar

Carignano H.A., Roldan D.L., Beribe M.J., Raschia M.A., Amadio A., Nani J.P., Gutierrez G., Alvarez I., Trono K., Poli M.A., Miretti M.M.(2018). Genome-wide scan for commons SNPs affecting bovine leukemia virus infection level in dairy cattle. BMC Genomics, 19: 142. Search in Google Scholar

Choi J.W., Liao X., Stothard P., Chung W.H., Jeon H.J., Miller S.P., Choi S.Y., Lee J.K., Yang B., Lee K.T., Han K.J., Kim H.C., Jeong D., Oh J.D., Kim N., Kim T.H., Lee H.K., Lee S.J.(2014). Whole-genome analyses of Korean native and Holstein cattle breeds by massively parallel sequencing. PLoS One, 9: e101127. Search in Google Scholar

Ciani E., Crepaldi P., Nicoloso L., Lasagna E., Sarti F.M., Moioli B., Napolita-no F., Carta A., Usai G., D’Andrea M., Marletta D., Ciampolini R., Riggio V., Occidente M., Matassino D., Kompan D., Modesto P., Macciotta N., Aj-mone-Marsan P., Pilla F.(2014). Genome-wide analysis of Italian sheep diversity reveals a strong geographic pattern and cryptic relationships between breeds. Anim. Genet., 45: 256–266. Search in Google Scholar

Clarke S.M., Henry H.M., Dodds K.G., Jowett T.W., Manley T.R., Anderson R.M., Mc Ewan J.C.(2014). A high throughput single nucleotide polymorphism multiplex assay for parentage assignment in New Zealand sheep. PLoS One, 9: e93392. Search in Google Scholar

Dalvit C., De Marchi M., Targhetta C., Gervaso M., Cassandro M.(2008). Genetic traceability of meat using microsatellite markers. Food Res. Int., 41: 301–307. Search in Google Scholar

Dimauro C., Cellesi M., Steri R., Gaspa G., Sorbolini S., Stella A., Macciot-ta N.P.P.(2013). Use of the canonical discriminant analysis to select SNP markers for bovine breed assignment and traceability purposes. Anim. Genet., 44: 377–382. Search in Google Scholar

Dimauro C., Nicoloso L., Cellesi M., Macciotta N.P.P., Ciani E., Moioli B., Pil-la F., Crepaldi P.(2015). Selection of discriminant SNP markers for breed and geographic assignment of Italian sheep. Small Rumin. Res., 128: 27–33. Search in Google Scholar

Dodds K.G., Auvray B., Newman S.A.N., Mc Ewan J.C.(2014). Genomic breed prediction in New Zealand sheep. BMC Genet., 15: 92–101. Search in Google Scholar

Gholizadeh M., Rahimi-Mianji G., Nejati-Javaremi A., De Koning D.J., Jo-nas E.(2014). Genomewide association study to detect QTL for twinning rate in Baluchi sheep. J. Genet., 93: 489–493. Search in Google Scholar

Hastie T., Tibshirani R., Friedman J.(2009). The elements of statistical learning the elements of statistical learning data mining, inference, and prediction. Springer Press, 2nd ed., 545 pp. Search in Google Scholar

Heaton M.P., Kalbfleisch T.S., Basnayake V., Clarke S.M., Kijas J.W., Leymas-ter K.A., Chitko-Mc Kown C.G., Simpson B., Mc Ewan J., Petrik D.T., Mad-dox J.F., Smith T.P.L.(2014). SNPs for parentage testing and traceability in globally diverse breeds of sheep. PLoS One, 9: e94851. Search in Google Scholar

Hubbard T.J.P., Aken B.L., Ayling S., Ballester B., Beal K., Bragin E., Brent S., Chen Y., Clapham P., Clarke L., Coates G., Fairley S., Fitzgerald S., Fernan-dez-Banet J., Gordon L., Graf S., Haider S., Hammond M., Holland R., Howe K., Jenkinson A., Johnson N., Kahari A., Keefe D., Keenan S., Kinsella R., Ko-kocinski F., Kulesha E., Lawson D., Longden I., Megy K., Meidl P., Over-duin B., Parker A., Pritchard B., Rios D.(2009). Ensemble BioMart: Ensemble online genome data base BioMart tool. Nucleic Acids Res., 37: 690–697. Search in Google Scholar

Hulsegge I., Schoon M., Windig J., Neuteboom M., Hiemstra S.J., Schurink A.(2019). Development of a genetic tool for determining breed purity of cattle. Livest. Sci., 223: 60–67. Search in Google Scholar

Jollife I.T., Cadima J.(2016). Principal component analysis: A review and recent developments. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 13: 374–381. Search in Google Scholar

Jombart T.(2008). Adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics, 24: 1403–1405. Search in Google Scholar

Jombart T., Devillard S., Balloux F.(2010). Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genet., 11: 94. Search in Google Scholar

Kijas J.W., Townley D., Dalrymple B.P., Heaton M.P., Maddox J.F., Mc Grath A., Wilson P., Ingersoll R.G., Mc Culloch R., Mc William S., Tang D., Mc Ewan J., Cockett N., Oddy V.H., Nicholas F.W., Raadsma H., Barris W., Bishop S.C., Coltman D., Crawford A., Eggen A., Erhardt G., Forage R., Hanotte O., Hunt P., Jianlin H., Li K., Marsan P.A., Miller J.E., Pemberton J., Schibler L.(2009). A genome wide survey of SNP variation reveals the genetic structure of sheep breeds. PLoS One, 11: 94. Search in Google Scholar

Kijas J.W., Lenstra J.A., Hayes B., Boitard S., Neto L.R., Cristobal M.S., Ser-vin B., Mc Culloch R., Whan V., Gietzen K., Paiva S., Barendse W., Ciani E., Raadsma H., Mc Ewan J., Dalrymple B.(2012). Genome-wide analysis of the world’s sheep breeds reveals high levels of historic mixture and strong recent selection. PLoS Biol., 10: e1001258. Search in Google Scholar

Korthauer K., Kimes P.K., Duvallet C., Reyes A., Subramanian A., Teng M., Shukla C., Alm E.J., Hicks S.C.(2019). A practical guide to methods controlling false discoveries in computational biology. Genome Biol., 20: 118. Search in Google Scholar

Lachance J., Tishkoff S.A.(2013). SNP ascertainment bias in population genetic analyses: Why it is important, and how to correct it. BioEssays., 35: 780–786. Search in Google Scholar

Manel S., Gaggiotti O.E., Waples R.S.(2005). Assignment methods: Matching biological questions with appropriate techniques. Trends Ecol. Evol., 20: 3. Search in Google Scholar

Maudet C., Luikart G., Taberlet P.(2002). Genetic diversity and assignment tests among seven French cattle breeds based on microsatellite DNA analysis. J. Anim. Sci., 80: 942–950. Search in Google Scholar

Meadows J.R.S., Li K., Kantanen J., Tapio M., Sipos W., Pardeshi V., Gupta V., Calvo J.H., Whan V., Norris B., Kijas J.W.(2005). Mitochondrial sequence reveals high levels of gene flow between breeds of domestic sheep from Asia and Europe. J. Hered., 96: 494–501. Search in Google Scholar

Moradi M.H., Nejati-Javaremi A., Moradi-Shahrbabak M., Dodds K.G., Mc-Ewan J.C.(2012). Genomic scan of selective sweeps in thin and fat tail sheep breeds for identifying of candidate regions associated with fat deposition. BMC Genet., 13: 10. Search in Google Scholar

Moradi M.H., Phua S.H., Hedayat N., Khodaei-Motlagh M., Razmkabir M.(2017). Haplotype and genetic diversity of mtDNA in indigenous Iranian sheep and an insight into the history of sheep domestication. J. Agric. Sci. Technol., 19: 591–601. Search in Google Scholar

Muñoz I., Henriques D., Johnston J.S., Chávez-Galarza J., Kryger P., Pinto M.A.(2015). Reduced SNP panels for genetic identification and introgression analysis in the dark honey bee (Apis mellifera mellifera). PLoS One, 10: e0124365. Search in Google Scholar

Negrini R., Milanesi E., Colli L., Pellecchia M., Nicoloso L., Crepaldi P., Lenstra J.A., Ajmone-Marsan P.(2007). Breed assignment of Italian cattle using biallelic AFLP® markers. Anim. Genet., 38: 147–153. Search in Google Scholar

Negrini R., Nicoloso L., Crepaldi P., Milanesi E., Colli L., Chegdani F., Pari-set L., Dunner S., Leveziel H., Williams J.L., Ajmone Marsan P.(2009). Assessing SNP markers for assigning individuals to cattle populations. Anim. Genet., 40: 18–26. Search in Google Scholar

Ni G., Cavero D., Fangmann A., Erbe M., Simianeet H.(2017). Whole-genome sequencebased genomic prediction in laying chickens with different genomic relationship matrices to account for genetic architecture. Genet Sel Evol., 49: 8. Search in Google Scholar

Panetto J.C.do C., Machado M.A., da Silva M.V.G.B., Barbosa R.S., dos Santos G.G., Leite R.de M.H., Peixoto M.G.C.D.(2017). Parentage assignment using SNP markers, inbreeding and population size for the Brazilian Red Sindhi cattle. Livest. Sci., 204: 33–38. Search in Google Scholar

Parker H.G., Ostrander E.A.(2005). Canine genomics and genetics: running with the pack. PLoS Genet., 1: 507–513. Search in Google Scholar

Paschou P., Ziv E., Burchard E.G., Choudhry S., Rodriguez-Cintron W., Mahoney M.W., Drineas P.(2007). PCA-correlated SNPs for structure identification in worldwide human populations. PLoS Genet., 3: e160. Search in Google Scholar

Plassais J., Kim J., Davis B.W., Karyadi B.W., Hogan A.N., Harris A.N., Decker B., Parker H.G., Ostander E.A.(2019). Whole genome sequencing of canids reveals genomic regions under selection and variants influencing morphology. Nat. Commun., 10: 1489. Search in Google Scholar

Pritchard J.K., Stephens M., Donnelly P.(2000). Inference of population structure using multilocus genotype data. Genetics, 155: 945–959. Search in Google Scholar

Purcell S., Neale B., Todd-Brown K., Thomas L., Ferreira M.A., Bender D., Maller J., Sklar P., De Bakker P.I., Daly M.J., Sham P.C.(2007). PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet., 81: 559–575. Search in Google Scholar

Ramos A.M., Megens H.J., Crooijmans R.P.M.A., Schook L.B., Groenen M.A.M.(2011). Identification of high utility SNPs for population assignment and traceability purposes in the pig using high-throughput sequencing. Anim. Genet., 42: 613–620. Search in Google Scholar

Reynolds J., Weir B.S., Cockerham C.C.(1983). Estimation of the coancestry coefficient: Basis for a short-term genetic distance. Genetics, 105: 767–779. Search in Google Scholar

Schwägele F.(2005). Traceability from a European perspective. Meat Sci., 71: 164–173. Search in Google Scholar

Sottile G., Sardina M.T., Mastrangelo S., Di Gerlando R., Tolone M., Chiodi M., Portolano B.(2018). Penalized classification for optimal statistical selection of markers from high-throughput genotyping: application in sheep breeds. Animal, 12: 1118–1125. Search in Google Scholar

Talenti A., Nicolazzi E.L., Chessa S., Frattini S., Moretti R., Coizet B., Nico-loso L., Colli L., Pagnacco G., Stella A., Ajmone-Marsan P., Ptak G., Crepal-di P.(2016). A method for single nucleotide polymorphism selection for parentage assessment in goats. J. Dairy Sci., 99: 1–8. Search in Google Scholar

Tortereau F., Moreno C.R., Tosser-Klopp G., Servin B., Raoul J.(2017). Development of a SNP panel dedicated to parentage assignment in French sheep populations. BMC Genet., 18: 50. Search in Google Scholar

Vatankhah M., Moradi-Shahrbabak M., Nejati-Javaremi A., Mireaei Ashtia-ni S., Vaez Torshizi R.(2004). A review of sheep breeding in Iran. Proc. First Congress on Animal and Aquatic Sciences, University of Tehran, Iran. Search in Google Scholar

Weihs C., Ligges U., Luebke K., Raabe N.(2005). klaR: analyzing German business cycles. In: Data analysis and decision support, Baier D., Decker R., Schmidt-Thieme L. (eds.). Springer- Verlag, pp. 335–343.10.1007/3-540-28397-8_36 Search in Google Scholar

Weir B.S., Cockerham C.C.(1984). Estimating F-statistics for the analysis of population structure. Evolution, 38: 1358–1370. Search in Google Scholar

Weller J.I., Seroussi E., Ron M.(2006). Estimation of the number of genetic markers required for individual animal identification accounting for genotyping errors. Anim. Genet., 37: 387–389. Search in Google Scholar

Wilkinson S., Wiener P., Archibald A.L., Law A., Schnabel R.D., Mc Kay S.D., Taylor J.F., Ogden R.(2011). Evaluation of approaches for identifying population informative markers from high density SNP Chips. BMC Genet., 12: 45. Search in Google Scholar

Willing E.M., Dreyer C., van Oosterhout C.(2012). Estimates of genetic differentiation measured by Fst do not necessarily require large sample sizes when using many SNP markers. PLoS One, 7: e42649. Search in Google Scholar

Wright S.(1950). The genetical structure os populations. Ann. Eugen., 15: 323. Search in Google Scholar

Zeder M.A.(2008). Animal domestication in the Zagros: A review of past and current research. Paléorient, 25: 11–25. Search in Google Scholar

Zeder M.A.(2012). Pathways to animal domestication. In: Biodiversity in agriculture: domestication, evolution, and sustainability, 1: 227–259. Search in Google Scholar

Polecane artykuły z Trend MD

Zaplanuj zdalną konferencję ze Sciendo