1. bookTom 20 (2020): Zeszyt 3 (July 2020)
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
2300-8733
Pierwsze wydanie
25 Nov 2011
Częstotliwość wydawania
4 razy w roku
Języki
Angielski
Otwarty dostęp

Effect of Hybrid Rye and Maize Grain Processing on Ruminal and Postruminal Digestibility Parameters

Data publikacji: 01 Aug 2020
Tom & Zeszyt: Tom 20 (2020) - Zeszyt 3 (July 2020)
Zakres stron: 1065 - 1083
Otrzymano: 17 Jul 2019
Przyjęty: 18 Feb 2020
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
2300-8733
Pierwsze wydanie
25 Nov 2011
Częstotliwość wydawania
4 razy w roku
Języki
Angielski

AACC (2011). International approved methods of analysis. 11th Ed. St. Paul, MN, USA. Andersson A.A.M., Dimberg L., Åman P., Landberg R. (2014). Recent findings on certain bioactive components in whole grain wheat and rye. J. Cereal Sci., 59: 294–311.10.1016/j.jcs.2014.01.003Search in Google Scholar

AOAC (2005). Association of official analytical chemists. Official methods of analysis. 18th ed. AOAC International, Washington, DC.Search in Google Scholar

Araujo R.C., Piresa A.V., Mourãoa G.B., Abdallab A.L., Sallamc S.M.A. (2011). Use of blanks to determine in vitro net gas and methane production when using rumen fermentation modifiers. Anim. Feed Sci. Tech., 166–167: 155–162.Search in Google Scholar

Benninghoff J., Paschke-Beese M., Südekum K.H. (2015). In situ and in vitro ruminal degradation of maize grain and untreated or xylose-treated wheat, barley and rye grains. Anim. Feed Sci. Tech., 210: 86–93.Search in Google Scholar

Bertipaglia L.M.A., Fondevila M., van Laar H., Castrillo C. (2010). Effect of pelleting and pellet size of a concentrate for intensively reared beef cattle on in vitro fermentation by two different approaches. Anim. Feed Sci. Tech., 159: 88–95.Search in Google Scholar

Crowe T.C., Seligman S.A., Copeland L. (2000). Inhibition of enzymic digestion of amylose by free fatty acids in vitro contributes to resistant starch formation. J. Nutr., 130: 2006–2008.Search in Google Scholar

Englyst H.N., Cummings J.H. (1984). Simplified method for the measurement of total non-starch polysaccharides by gas-liquid chromatography of constituent sugars as alditol acetates. Analyst, 109: 937–942.Search in Google Scholar

Faisant N., Planchot V., Kozlowski F., Pacourent M.P., Colonna P., Champ M. (1995). Resistant starch of determination adapted to products containing high level of resistant starch. Sci. Alim., 15: 83–89.Search in Google Scholar

Goering H.K., Van Soest P.J. (1970). Forage fibre analysis. In: Agricultural Handbook No. 379. Agricultural Research service, USDA, Washington, DC, 20 pp.Search in Google Scholar

Grajewski J., Błajet-Kosicka A., Twarużek M., Kosicki R. (2012). Occurrence of mycotoxins in Polish animal feed in years 2006–2009. J. Anim. Physiol. Anim. Nutr., 95: 870–877.Search in Google Scholar

Hoseney R.C. (1994). Principles of cereal science and technology. American Association of Cereal Chemists, St. Paul, USA.Search in Google Scholar

Knowlton K.F., Glenn B.P., Erdman R.A. (1998). Performance, ruminal fermentation, and site of starch digestion in early lactation cows fed corn grain harvested and processed differently. J. Dairy Sci., 81: 1972–1984.Search in Google Scholar

Kowalski Z.M., Pisulewski P.M.P., Peyraud J-L., Kamiński J. (1995). The effect of drier outflow temperature on rumen protein degradability and intestinal digestibility of rumen-undegraded protein of dehydrated grass and lucerne. Ann. Zootech., 44 (suppl.1): 88.Search in Google Scholar

Krieg J., Seifried N., Steingass H., Rodehutscord M. (2017). In situ and in vitro ruminal starch degradation of grains from different rye, triticale and barley genotypes. Animal, 11 (10): 1745–1753.Search in Google Scholar

McAllister T.A., Phillippe C., Rode L.M., Cheng K.J. (1993). Effect of the protein matrix on the digestion of cereal grains by ruminal microorganisms. J. Anim. Sci., 71: 205–212.Search in Google Scholar

Mabjeesh S.J., Cohen M., Arieli A. (2000). In vitro methods for measuring the dry matter digestibility of ruminant feedstuffs: Comparison of methods and inoculum source. J. Dairy Sci., 83: 2289–2294.Search in Google Scholar

Menke H.H., Steingass H. (1988). Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Develop., 28: 7-55.Search in Google Scholar

Mertens D.R. (2002). Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beakers or crucibles: Collaborative Study. J. AOAC Int., 85 (6): 1217–1240.Search in Google Scholar

Micek P. (2008). Nutritional usefulness to ruminants of grain of Polish cereal species and cultivars. Scientific papers of University of Agriculture in Krakow. Habilitation thesis No 326, 1–127 (in Polish).Search in Google Scholar

Mills J.A.N., France J., Dijkstra J. (1999). A review of starch digestion in the lactating dairy cow and proposals for a mechanistic model. 2. Postruminal starch digestion and small intestinal glucose absorption. J. Anim. Feed Sci., 8 (4): 451–481.Search in Google Scholar

Nikokyris P.N., Kandylis K. (1997). Feed protein fractions in various solvents of ruminant feedstuffs. J. Sci. Food Agric., 75: 198–204.Search in Google Scholar

NRC (2001). National Research Council. Nutrient Requirements of Dairy Cattle. 7th rev. ed., National Academy Press, Washington, DC.Search in Google Scholar

Offner A., Sauvant D. (2004). Prediction of in vivo starch digestion in cattle from in situ data. Anim. Feed Sci. Tech., 111: 41–56.Search in Google Scholar

Owens F.N., Zinn R.A., Kim Y.K. (1986). Limits to starch digestion in the ruminant small intestine. J. Anim. Sci., 63: 1634–1648.Search in Google Scholar

Ørskov E.R. (1986). Starch digestion and utilization in ruminants. J. Anim. Sci., 63: 1624–1633.Search in Google Scholar

Ørskov E.R., McDonald P. (1979). The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci., 92: 499–503.Search in Google Scholar

Petr J. (2005). Yield potential of rye, hybrid and population varieties in ecological and intensive cultivation. Sci. Agric. Bohem., 36 (2): 41–48.Search in Google Scholar

Peyraud J.L., Genest-Rulquin Ch., Verité R. (1988). Mesure de la digestion de l’azote des aliments dans l’intestin des ruminants par la technique des sachets mobiles. 1. Evaluation de la quantité de matières azotées indigestibles en sachet des principaux aliments. Reprod. Nutr. Dev., 28: 129–130.Search in Google Scholar

Philippeau C., Le Deschault de Monredon F., Michalet-Doreau B. (1999). Relationship between ruminal starch degradation and the physical characteristics of corn grain. J. Anim. Sci., 77: 238–243.Search in Google Scholar

Philippeau C., Michalet-Doreau B. (1998). Influence of genotype and ensiling of corn grain on in situ degradation of starch in the rumen. J. Dairy Sci., 81: 2178–2184.Search in Google Scholar

Plaizier J.C., Krause D.O., Gozho G.N., McBride B.W. (2009). Subacute ruminal acidosis in dairy cows: the physiological causes, incidence and consequences. Vet. J., 176: 21–31.Search in Google Scholar

Rémond D., Cabrera-Estrada J.I., Champion M., Chauveau B., Coudure R., Poncet C. (2004). Effect of corn particle size on site and extent of starch digestion in lactating dairy cows. J. Dairy Sci., 87: 1389–1399.Search in Google Scholar

Robertson J.B., Van Soest P.J. (1981). The detergent system analysis and its application to human foods. In “The analysis of dietary fiber in food”, ed. by J. Theander, Dekker INC, pp 123–157.Search in Google Scholar

Rowe J.B., Choct M., Pethick D.W. (1999). Processing cereal grains for animal feeding. Aust. J. Agric. Res., 50 (5): 721–736.Search in Google Scholar

Sauvant D. (1997). Conséquences digestives et zootechniques des variations de la vitesse de digestion de l’amidon chez les ruminants. INRA Prod. Anim., 10: 287–300.Search in Google Scholar

Seifried N., Steingass H., Schipprack W., Rodehutscord M. (2016). Variation in ruminal in situ degradation of crude protein and starch from maize grains compared to in vitro gas production kinetics and physical and chemical characteristics. Arch. Anim. Nutr., 70: 333–349.Search in Google Scholar

Svihus B., Uhlen A.K., Harstad O.M. (2005). Effect of starch granule structure, associated components and processing on nutritive value of cereal starch: A review. Anim. Feed Sci. Tech., 122: 303–320.Search in Google Scholar

Tagliapietra F., Cattani M., Hansen H., Hindrichsen I., Bailoni L., Schiavon S. (2011). Metabolizable energy content of feeds based on 24 or 48 h in situ NDF digestibility and on in vitro 24 h gas production methods. Anim. Feed Sci. Tech., 170: 182–191.Search in Google Scholar

Tothi R., Lund P., Weisbjerg M.R., Hvelplund T. (2003). Effect of expander processing on fractional rate of maize and barley starch degradation in the rumen of dairy cows estimated using rumen evacuation and in situ techniques. Anim. Feed Sci. Tech., 104: 71–94.Search in Google Scholar

Wang M., Jiang J., Tan Z.L., Tang S.X., Sun Z.H., Han X.F. (2009). In situ ruminal crude protein and starch degradation of three classes of feedstuffs in goats. J. Appl. Anim. Res., 36: 23–28.Search in Google Scholar

Woods V.B., Moloney A.P., O’Mara F.P.O. (2003). The nutritive value of concentrate feedstuffs for ruminant animals: Part II: In situ ruminal degradability of crude protein. Anim. Feed Sci. Tech., 110: 131–143.Search in Google Scholar

Polecane artykuły z Trend MD

Zaplanuj zdalną konferencję ze Sciendo