1. bookTom 20 (2020): Zeszyt 3 (July 2020)
Informacje o czasopiśmie
Pierwsze wydanie
25 Nov 2011
Częstotliwość wydawania
4 razy w roku
Otwarty dostęp

Impact of Yeast Fermented Poultry by-Product Meal on Growth, Digestive Enzyme Activities, Intestinal Morphometry and Immune Response Traits of Common Carp (Cyprinus carpio)

Data publikacji: 01 Aug 2020
Tom & Zeszyt: Tom 20 (2020) - Zeszyt 3 (July 2020)
Zakres stron: 939 - 959
Otrzymano: 06 Oct 2019
Przyjęty: 10 Feb 2020
Informacje o czasopiśmie
Pierwsze wydanie
25 Nov 2011
Częstotliwość wydawania
4 razy w roku

Abdel-Daim M.M., Eissa I.A.M., Abdeen A., Abdel-Latif H.M.R., Ismail M., Dawood M.A.O., Hassan A.M. (2019). Lycopene and resveratrol ameliorate zinc oxide nanoparticles-induced oxidative stress in Nile tilapia, Oreochromis niloticus. Environ, Toxicol. Pharmacol., 69:44-50.Search in Google Scholar

Abdel-Warith A., Russell P., Davies S. (2001). Inclusion of a commercial poultry by-product meal as a protein replacement of fish meal in practical diets for African catfish Clarias gariepinus (Burchell 1822). Aquacult. Res., 32:296-305.Search in Google Scholar

Alexander C., Sahu N.P., Pal A.K., Akhtar M.S. (2011). Haemato-immunological and stress responses of Labeo rohita (Hamilton) fingerlings: effect of rearing temperature and dietary gelatinized carbohydrate. J. Anim. Physiol. Anim. Nutr., 95:653-663.Search in Google Scholar

AOAC (2007). Method 2007-04. Association of Official Analytical Chemists. Washington, DC. Bairagi A., Ghosh K.S., Sen S., Ray A. (2002). Duckweed (Lemna polyrhiza) leaf meal as a source of feedstuff in formulated diets for rohu (Labeo rohita Ham.) fingerlings after fermentation with a fish intestinal bacterium. Bioresour. Technol., 85:17-24.10.1016/S0960-8524(02)00067-6Search in Google Scholar

Bancroft J., Stevens A., Turner D. (1996). Theory and practice of histological techniques: Churchill Livingstone New York. the text. 766.Search in Google Scholar

Barišić J., Marijić V.F., Mijošek T., Čož-Rakovac R., Dragun Z., Krasnići N., Ivanković D., Kružlicová D., Erk M. (2018). Evaluation of architectural and histopathological biomarkers in the intestine of brown trout (Salmo trutta Linnaeus, 1758) challenged with environmental pollution. Sci. Total Environ., 642:656-664.Search in Google Scholar

Blaxhall P.C., Daisley K.W. (1973). Routine haematological methods for use with fish blood. J. Fish Biol., 5:771-781.Search in Google Scholar

Borges A., Scotti L.V., Siqueira D.R., Jurinitz D.F., Wassermann G.F. (2004). Hematologic and serum biochemical values for jundiá (Rhamdia quelen). Fish Physiol. Biochem., 30:21-25.Search in Google Scholar

Borlongan, I.G., 1990. Studies on the digestive lipases of milkfish, Chanos chanos. Aquaculture 89, 315-325.10.1016/0044-8486(90)90135-ASearch in Google Scholar

Caspary W.F. (1992). Physiology and pathophysiology of intestinal absorption. Oxford University Press.10.1093/ajcn/55.1.299s1728844Search in Google Scholar

Coulombe J.J., Favreau L. (1963). A new simple semimicro method for colorimetric determination of urea. Clin. Chem., 9:102-108.Search in Google Scholar

Dawood M.A.O., El-Dakar A., Mohsen M., Abdelraouf E., Koshio S., Ishikawa M., Yokoyama S. (2014). Effects of using exogenous digestive enzymes or natural enhancer mixture on growth, feed utilization, and body composition of Rabbitfish, Siganus rivulatus. Journal of Agricultural Science and Technology. B 4.Search in Google Scholar

Dawood M.A.O., Eweedah N.M., Khalafalla M.M., Khalid A. (2020a). Evaluation of fermented date palm seed meal with Aspergillus oryzae on the growth, digestion capacity and immune response of Nile tilapia (Oreochromis niloticus). Aquacult. Nutr. https://doi.org/10.1111/anu.1304210.1111/anu.13042Search in Google Scholar

Dawood M.A.O., Eweedah N.M., Moustafa E.M., El-Sharawy M.E., Soliman A.A., Amer A.A., Atia M.H. (2020b). Copper nanoparticles mitigate the growth, immunity, and oxidation resistance in common carp (Cyprinus carpio). Biol. Trace Elem. Res. https://doi.org/10.1007/s12011-020-02068-010.1007/s12011-020-02068-032026341Search in Google Scholar

Dawood M.A.O., Magouz F.I., Mansour M., Saleh A.A., Asely A.M.E., Fadl S.E., Ahmed H.A., Al-Ghanim K.A., Mahboob S., Al-Misned F. (2020c). Evaluation of yeast fermented poultry byproduct meal in Nile tilapia (Oreochromis niloticus) feed: Effects on growth performance, digestive enzymes activity, innate immunity, and antioxidant capacity. Front. Vet. Sci. https://doi.org/10.3389/fvets.2019.0051610.3389/fvets.2019.00516699648732047756Search in Google Scholar

Dawood M.A.O., Moustafa E.M., Gewaily M.S., Abdo S.E., AbdEl-kader M.F., SaadAllah M.S., Hamouda A.H. (2020d). Ameliorative effects of Lactobacillus plantarum L-137 on Nile tilapia (Oreochromis niloticus) exposed to deltamethrin toxicity in rearing water. Aquat. Toxicol., 219:105377.10.1016/j.aquatox.2019.10537731838306Search in Google Scholar

Dawood M.A.O., Eweedah N.M., Moustafa E.M., Shahin M.G. (2019a). Synbiotic effects of Aspergillus oryzae and beta-glucan on growth and oxidative and immune responses of Nile tilapia, Oreochromis niloticus. Probiotics Antimicrob. Proteins. https://doi.org/10.1007/s12602-018-9513-910.1007/s12602-018-9513-930617951Search in Google Scholar

Dawood M.A.O., Eweedah N.M., Moustafa Moustafa E., Shahin M.G. (2019b). Effects of feeding regimen of dietary Aspergillus oryzae on the growth performance, intestinal morphometry and blood profile of Nile tilapia (Oreochromis niloticus). Aquacult. Nutr. 25: 1063-1072.10.1111/anu.12923Search in Google Scholar

Dawood M.A.O., Koshio S. (2016). Recent advances in the role of probiotics and prebiotics in carp aquaculture: A review. Aquaculture. 454:243-251.Search in Google Scholar

Dawood M.A.O., Koshio S. (2019). Application of fermentation strategy in aquafeed for sustainable aquaculture. Rev. Aquacult. https://doi.org/10.1111/raq.1236810.1111/raq.12368Search in Google Scholar

Dawood M.A.O., Koshio S., Abdel-Daim M.M., Van Doan H. (2019c). Probiotic application for sustainable aquaculture. Rev. Aquacult., 11:907-924.10.1111/raq.12272Search in Google Scholar

Dawood M.A.O., Koshio S., Ishikawa M., El-Sabagh M., Esteban M.A., Zaineldin A.I. (2016a). Probiotics as an environment-friendly approach to enhance red sea bream, Pagrus major growth, immune response and oxidative status. Fish Shellfish Immunol., 57:170-178.10.1016/j.fsi.2016.08.03827542618Search in Google Scholar

Dawood M.A.O., Koshio S., Ishikawa M., Yokoyama S. (2016b). Immune responses and stress resistance in red sea bream, Pagrus major, after oral administration of heat-killed Lactobacillus plantarum and vitamin C. Fish Shellfish Immunol., 54:266-275.10.1016/j.fsi.2016.04.01727095173Search in Google Scholar

Dawson M.R., Alam M.S., Watanabe W.O., Carroll P.M., Seaton P.J. (2018). Evaluation of poultry by-product meal as an alternative to fish meal in the diet of juvenile Black sea bass reared in a recirculating aquaculture system. N. Am. J. Aquac., 80:74-87.Search in Google Scholar

Doan H.V., Hoseinifar S.H., Sringarm K., Jaturasitha S., Khamlor T., Dawood M.A.O., Esteban M.Á., Soltani M., Musthafa M.S. (2019). Effects of elephant’s foot (Elephantopus scaber) extract on growth performance, immune response, and disease resistance of Nile tilapia (Oreochromis niloticus) fingerlings. Fish Shellfish Immunol., 93:328-335.Search in Google Scholar

Dossou S., Koshio S., Ishikawa M., Yokoyama S., Dawood M.A.O., El Basuini M.F., El-Hais A.M., Olivier A. (2018a). Effect of partial replacement of fish meal by fermented rapeseed meal on growth, immune response and oxidative condition of red sea bream juvenile, Pagrus major. Aquaculture. 490:228-235.10.1016/j.aquaculture.2018.02.010Search in Google Scholar

Dossou S., Koshio S., Ishikawa M., Yokoyama S., Dawood M.A.O., El Basuini M.F., Olivier A., Zaineldin A.I. (2018b). Growth performance, blood health, antioxidant status and immune response in red sea bream (Pagrus major) fed Aspergillus oryzae fermented rapeseed meal (RMKoji). Fish Shellfish Immunol., 75:253-262.10.1016/j.fsi.2018.01.03229360542Search in Google Scholar

Dossou S., Koshio S., Ishikawa M., Yokoyama S., El Basuini M.F., Zaineldin A.I., Mzengereza K., Moss A., Dawood M.A.O. (2019). Effects of replacing fishmeal with fermented and non-fermented rapeseed meal on the growth, immune and antioxidant responses of red sea bream (Pagrus major). Aquacult. Nutr., 25:508-517.Search in Google Scholar

Doumas, B.T., Bayse, D.D., Carter, R.J., Peters, T., Schaffer, R., 1981. A candidate reference method for determination of total protein in serum. I. Development and validation. Clin. Chem., 27:1642-1650.10.1093/clinchem/27.10.1642Search in Google Scholar

Dumas B.T., Biggs H.G. (1972). Standard Methods of Clinical Chemistry. Ed., Academic Press, New York.Search in Google Scholar

El-Boshy M.E., Ahmed M., AbdelHamid F.M., Gadalla H.A. (2010). Immunomodulatory effect of dietary Saccharomyces cerevisiae, β-glucan and laminaran in mercuric chloride treated Nile tilapia (Oreochromis niloticus) and experimentally infected with Aeromonas hydrophila. Fish Shellfish Immunol., 28:802-808.Search in Google Scholar

El-Sayed A.F. (1998). Total replacement of fish meal with animal protein sources in Nile tilapia, Oreochromis niloticus (L.), feeds. Aquacult. Res., 29:275-280.Search in Google Scholar

Engstad R.E., Robertsen B.r. (1993). Recognition of yeast cell wall glucan by Atlantic salmon (Salmo salar L.) macrophages. Dev. Comp. Immunol., 17:319-330.Search in Google Scholar

Firouzbakhsh F., Noori F., Khalesi M.K., Jani-Khalili K. (2011). Effects of a probiotic, protexin, on the growth performance and hematological parameters in the Oscar (Astronotus ocellatus) fingerlings. Fish Physiol. Biochem., 37:833-842.Search in Google Scholar

Fowler L. (1991). Poultry by-product meal as a dietary protein source in fall chinook salmon diets. Aquaculture. 99:309-321.Search in Google Scholar

Gümüş E., Aydin B. (2013). Effect of poultry by-product meal on growth performance and fatty acid composition of carp (Cyprinus carpio) fry. Turk. J. Fish. Aquat. Sc., 13:827-834.Search in Google Scholar

Gunben E.M., Senoo S., Yong A., Shapawi R. (2014). High potential of poultry by-product meal as a main protein source in the formulated feeds for a commonly cultured grouper in Malaysia (Epinephelus fuscoguttatus). Sains Malaysiana. 43:399-405.Search in Google Scholar

Harikrishnan R., Kim J.-S., Kim M.-C., Balasundaram C., Heo M.-S. (2011). Prunella vulgaris enhances the non-specific immune response and disease resistance of Paralichthys olivaceus against Uronema marinum. Aquaculture. 318:61-66.Search in Google Scholar

Heinegård D., Tiderström G. (1973). Determination of serum creatinine by a direct colorimetric method. Clinica Chimica Acta. 43:305-310.Search in Google Scholar

Hekmatpour F., Ghafle Marmmazi J., Zakeri M., Mousavi S.M. (2018). Potential of poultry byproduct meal as a main protein source in diets formulated for juvenile sobaity (Sparidentex hasta). Iran. J. Fish. Sci. 18(4):873-890.Search in Google Scholar

Hernández C., Olvera-Novoa M., Hardy R., Hermosillo A., Reyes C., González B.J. (2010). Complete replacement of fish meal by porcine and poultry by-product meals in practical diets for fingerling Nile tilapia Oreochromis niloticus: digestibility and growth performance. Aquacult. Nutr., 16:44-53.Search in Google Scholar

Hill J.C., Alam M.S., Watanabe W.O., Carroll P.M., Seaton P.J., Bourdelais A.J. (2019). Replacement of menhaden fish meal by poultry by-product meal in the diet of juvenile red porgy. N. Am. J. Aquacult., 81:81-93.Search in Google Scholar

Hong K.-J., Lee C.-H., Kim S.W. (2004). Aspergillus oryzae GB-107 fermentation improves nutritional quality of food soybeans and feed soybean meals. J. Med. Food., 7:430-435.Search in Google Scholar

Houston A. (1990). Blood and circulation/Methods for fish biology. NY.: Amer. Fish. Society. Irianto A., Austin B. (2002). Use of probiotics to control furunculosis in rainbow trout, Oncorhynchus mykiss (Walbaum). J. Fish Dis., 25:333-342.10.1046/j.1365-2761.2002.00375.xSearch in Google Scholar

Jagruthi C., Yogeshwari G., Anbazahan S.M., Mari L.S.S., Arockiaraj J., Mariappan P., Sudhakar G.R.L., Balasundaram C., Harikrishnan R. (2014). Effect of dietary astaxanthin against Aeromonas hydrophila infection in common carp, Cyprinus carpio. Fish Shellfish Immunol., 41:674-680.Search in Google Scholar

Jain N.C. (1986). Schalm’s veterinary hematology. Lea & Febiger, Philadelphia: 21-62.Search in Google Scholar

Jannathulla R., Dayal J.S., Vasanthakumar D., Ambasankar K., Panigrahi A., Muralidhar M. (2019). Apparent digestibility coefficients of fungal fermented plant proteins in two different penaeid shrimps—A comparative study. Aquacult. Res., 50:1491-1500.Search in Google Scholar

Jiang C. (1982). Activity measuring for implemental enzyme. Science and Technology Press, Shanghai.Search in Google Scholar

Jin Z. (1995). The evaluation principle and method of functional food. Beijing: Beijing Publishers.Search in Google Scholar

Junqueira L.C.U., Carneiro J. (2005). Basic histology: text & atlas. McGraw-Hill Professional. Karapanagiotidis I.T., Psofakis P., Mente E., Malandrakis E., Golomazou E.J. (2019). Effect of fishmeal replacement by poultry by-product meal on growth performance, proximate composition, digestive enzyme activity, haematological parameters and gene expression of gilthead seabream (Sparus aurata). Aquacult. Nutr., 25:3-14.Search in Google Scholar

Kaviraj A., Mondal K., Mukhopadhyay P.K., Turchini G.M. (2013). Impact of fermented mulberry leaf and fish offal in diet formulation of Indian major carp (Labeo rohita) Proceedings of the Zoological Society. Springer, 64-73.Search in Google Scholar

Kawahara E., Ueda T., Nomura S. (1991). In vitro phagocytic activity of white-spotted char blood cells after injection with Aeromonas salmonicida extracellular products. Fish Pathol., 26:213-214.Search in Google Scholar

Kim S.-S., Galaz G.B., Pham M.A., Jang J.-W., Oh D.-H., Yeo I.-K., Lee K.-J. (2009). Effects of dietary supplementation of a meju, fermented soybean meal, and Aspergillus oryzae for juvenile parrot fish (Oplegnathus fasciatus). Asian-Australas J. Anim. Sci., 22:849-856.Search in Google Scholar

Kureshy N., Davis D.A., Arnold C. (2000). Partial replacement of fish meal with meat-and-bone meal, flash-dried poultry by-product meal, and enzyme-digested poultry by-product meal in practical diets for juvenile red drum. N. Am. J. Aquac., 62:266-272.Search in Google Scholar

Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem., 193:265-275.Search in Google Scholar

Lucky Z. (1977). Methods for the diagnosis of fish diseases, Amerind. publishing Co. PV T. Ltd., New Delhi, Bombay, India.Search in Google Scholar

Mehana E., Rahmani A., Aly S. (2015). Immunostimulants and Fish Culture: An Overview. Annu. Res. Rev. Biol., 5 (6):477-489.Search in Google Scholar

Mello H.d., Moraes J., Niza I.G., Moraes F.R.d., Ozório R., Shimada M.T., Engracia F., Claudiano G. (2013). Efeitos benéficos de probióticos no intestino de juvenis de Tilápia-do-Nilo. Pesquisa Veterinária Brasileira, 724-730.10.1590/S0100-736X2013000600006Search in Google Scholar

Mondal K. (2014). Nutritional evaluation of fermented poultry feather feal in the formulated diets of fingerlings of Catla catla (Hamilton). Electronic Journal of Biology. 10:118-124.Search in Google Scholar

Moss A.S., Koshio S., Ishikawa M., Yokoyama S., Nhu T.H., Dawood M.A.O., Wang W. (2018). Replacement of squid and krill meal by snail meal (Buccinum striatissimum) in practical diets for juvenile of kuruma shrimp (Marsupenaeus japonicus). Aquacult. Res., 49:3097-3106.Search in Google Scholar

Nayak S. (2010). Probiotics and immunity: a fish perspective. Fish Shellfish Immunol., 29:2-14.Search in Google Scholar

Nengas I., Alexis M.N., Davies S.J. (1999). High inclusion levels of poultry meals and related byproducts in diets for gilthead seabream Sparus aurata L. Aquaculture. 179:13-23.Search in Google Scholar

Noga E. (1996). Fish Disease. Diagnosis and Treatment. St. Louis, Missouri: Mosby-Year Book. Inc.Search in Google Scholar

Ortuño J., Cuesta A., Rodrıguez A., Esteban M.A., Meseguer J. (2002). Oral administration of yeast, Saccharomyces cerevisiae, enhances the cellular innate immune response of gilthead seabream (Sparus aurata L.). Vet. Immunol. Immunopathol., 85:41-50.Search in Google Scholar

Panigrahi A., Kiron V., Satoh S., Hirono I., Kobayashi T., Sugita H., Puangkaew J., Aoki T. (2007). Immune modulation and expression of cytokine genes in rainbow trout Oncorhynchus mykiss upon probiotic feeding. Dev. Comp. Immunol., 31:372-382.Search in Google Scholar

Parés-Sierra G., Durazo E., Ponce M.A., Badillo D., Correa-Reyes G., Viana M.T. (2014). Partial to total replacement of fishmeal by poultry by-product meal in diets for juvenile rainbow trout (Oncorhynchus mykiss) and their effect on fatty acids from muscle tissue and the time required to retrieve the effect. Aquacult. Res., 45:1459-1469.Search in Google Scholar

Parry J., Richard M., Chandan R.C., Shahani K.M. (1965). A rapid and sensitive assay of muramidase. Proceedings of the Society for Experimental Biology and Medicine 119, 384-386.10.3181/00379727-119-3018814328897Search in Google Scholar

Peppler, H., 1982. Yeast extracts. Economic Microbiology ed. London: Academic Press.Search in Google Scholar

Pirarat N., Boonananthanasarn S., Krongpong L., Katagiri T., Maita M. (2015). Effect of activated charcoal-supplemented diet on growth performance and intestinal morphology of Nile tilapia (Oreochromis niloticus). THAI J. Vet. Med., 45:113-119.Search in Google Scholar

Plaipetch P., Yakupitiyage A. (2014). Effect of replacing soybean meal with yeast-fermented canola meal on growth and nutrient retention of Nile tilapia, Oreochromis niloticus (Linnaeus 1758). Aquacult. Res., 45:1744-1753.Search in Google Scholar

Ran C., Huang L., Liu Z., Xu L., Yang Y., Tacon P., Auclair E., Zhou Z. (2015). A comparison of the beneficial effects of live and heat-inactivated baker’s yeast on Nile tilapia: suggestions on the role and function of the secretory metabolites released from the yeast. PloS one 10, e0145448.10.1371/journal.pone.0145448469059026696403Search in Google Scholar

Rašković B.S., Stanković M.B., Marković Z.Z., Poleksić V.D. (2011). Histological methods in the assessment of different feed effects on liver and intestine of fish. Journal of Agricultural Sciences. 56:87-100.Search in Google Scholar

Reitman S., Frankel S. (1957). A Colorimetric Method for the Determination of Serum Glutamic Oxalacetic and Glutamic Pyruvic Transaminases. Am. J. Clin. Pathol., 28:56-63.Search in Google Scholar

Saeidi asl M.R., Adel M., Caipang C.M.A., Dawood M.A.O. (2017). Immunological responses and disease resistance of rainbow trout (Oncorhynchus mykiss) juveniles following dietary administration of stinging nettle (Urtica dioica). Fish Shellfish Immunol., 71:230-238.Search in Google Scholar

Samaddar A., Kaviraj A., Saha S. (2015). Utilization of fermented animal by-product blend as fishmeal replacer in the diet of Labeo rohita. Aquacult. Rep., 1:28-36.Search in Google Scholar

Saurabh S., Sahoo P. (2008). Lysozyme: an important defence molecule of fish innate immune system. Aquacult. Res., 39:223-239.Search in Google Scholar

Schwarz K., Furuya W., Natali M., Michelato M., Gualdezi M. (2010). Mannanoligosaccharides in diets for Nile tilapia, juveniles. Acta Sci. Anim. Sci., 32:197-203.Search in Google Scholar

Steffens W. (1994). Replacing fish meal with poultry by-product meal in diets for rainbow trout, Oncorhynchus mykiss. Aquaculture. 124:27-34.Search in Google Scholar

Takagi S., Shimeno S., Hosokawa H., Ukawa M. (2000). Replacement of fish meal by combined inclusion of alternative protein sources in a diet for yearling red sea bream, Pagrus major. Aquac. Res., 48:545-552.Search in Google Scholar

Tellez-Bañuelos M.C., Santerre A., Casas-Solis J., Bravo-Cuellar A., Zaitseva G. (2009). Oxidative stress in macrophages from spleen of Nile tilapia (Oreochromis niloticus) exposed to sublethal concentration of endosulfan. Fish Shellfish Immunol., 27:105-111.Search in Google Scholar

Trinder P. (1969). Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor. Ann. Clin. Biochem., 6:24-27.Search in Google Scholar

Upadhaya S.D., Kim I.H. (2015). Ileal digestibility of nutrients and amino acids in unfermented, fermented soybean meal and canola meal for weaning pigs. Anim. Sci. J., 86:408-414.Search in Google Scholar

Wang Y., Wang F., Ji W.X., Han H., Li P. (2015). Optimizing dietary protein sources for Japanese sea bass (Lateolabrax japonicus) with an emphasis on using poultry by-product meal to substitute fish meal. Aquacult. Res., 46:874-883.Search in Google Scholar

Webster C.D., Tiu L.G., Morgan A.M., Gannam A. (1999). Effect of partial and total replacement of fish meal on growth and body composition of sunshine bass Morone chrysops× M. saxatilis fed practical diets. J. World Aqualt. Soc., 30:443-453.Search in Google Scholar

Worthington V. (1993). Worthington enzyme manual: enzymes and related biochemicals worthingthon chemical. New Jersey. p 399.Search in Google Scholar

Yang Y., Xie S., Cui Y., Zhu X., Lei W., Yang Y. (2006). Partial and total replacement of fishmeal with poultry by-product meal in diets for gibel carp, Carassius auratus gibelio Bloch. Aquacult. Res., 37:40-48.Search in Google Scholar

Yu L., Wu F., Liu W., Tian J., Lu X., Wen H. (2017). Semisynthetic ferulic acid derivative: an efficient feed additive for Genetically Improved Farmed Tilapia (Oreochromis niloticus). Aquacult. Res., 48:5017-5028.Search in Google Scholar

Zhou Q.-C., Zhao J., Li P., Wang H.-L., Wang L.-G. (2011). Evaluation of poultry by-product meal in commercial diets for juvenile cobia (Rachycentron canadum). Aquaculture. 322:122-127.Search in Google Scholar

Polecane artykuły z Trend MD

Zaplanuj zdalną konferencję ze Sciendo