Otwarty dostęp

Biochemical and Haematological Blood Parameters of Sows and Piglets Fed a Diet with a Dried Fermented Rapeseed Meal

, ,  oraz   
04 maj 2020

Zacytuj
Pobierz okładkę

Canibe N., Jensen B.B. (2012). Fermented liquid feed – microbial and nutritional aspects and impact on enteric diseases in pigs. Anim. Feed. Sci. Tech., 173: 17–40.10.1016/j.anifeedsci.2011.12.021Search in Google Scholar

Canibe N., Højberg O., Badsberg J.H., Jensen B.B. (2007). Effect of feeding fermented liquid feed and fermented grain on gastrointestinal ecology and growth performance in piglets. J. Anim. Sci., 85: 2959–2971.10.2527/jas.2006-744Search in Google Scholar

Cheng Y.H., Su L.W., Horng Y.B., Yu Y.H. (2019). Effects of soybean meal fermented by Lacto-bacillus species and Clostridium butyricum on growth performance, diarrhea incidence, and fecal bacteria in weaning piglets. Ann. Anim. Sci., 19: 1051–1062.10.2478/aoas-2019-0042Search in Google Scholar

Chi C.H., Cho S.J. (2016). Improvement of bioactivity of soybean meal by solid-state fermentation with Bacillus amyloliquefaciens versus Lactobacillus spp. and Saccharomyces cerevisiae. LWT – Food Sci. Tech., 68: 619–625.10.1016/j.lwt.2015.12.002Search in Google Scholar

Chiang G., Lu W.Q., Piao X.S., Hu J.K., Gong L.M., Thacker P.A. (2010). Effects of feeding solid-state fermented rapeseed meal on performance, nutrient digestibility, intestinal ecology and intestinal morphology of broiler chickens. Asian Austral. J. Anim. Sci., 23: 263–271.10.5713/ajas.2010.90145Search in Google Scholar

Choct M., Dersjant-Li Y., Mc Leish J., Peisker M. (2010). Soy oligosaccharides and soluble non-starch polysaccharides: A review of digestion, nutritive and anti-nutritive effects in pigs and poultry. Asian Austral. J. Anim. Sci., 23: 1386–1398.10.5713/ajas.2010.90222Search in Google Scholar

Czech A. (2007). Efficacy of phytase in animal diets. Med. Veter., 63: 1034–1039.Search in Google Scholar

Czech A., Grela E.R. (2004). Biochemical and haematological blood parameters of sows during pregnancy and lactation fed the diet with different source and activity of phytase. Anim. Feed Sci. Tech., 116: 211–223.10.1016/j.anifeedsci.2004.07.013Search in Google Scholar

Czech A., Grela E.R., Mokrzycka A., Pejsak Z. (2010). Efficacy of mannanoligosaccharides additive to sows diets on colostrum, blood immunoglobulin content and production parameters of piglets. Pol. J. Vet. Sci., 13: 525–531.Search in Google Scholar

Czech A., Grela E., Klebaniuk R., Ognik K., Samolińska W. (2018). Polish crossbred pigs’ blood haematological parameters depending on their age and physiological state. Ann. Warsaw Univ. Life Sci. – SGGW – Anim. Sci., 56: 185–195.10.22630/AAS.2017.56.2.20Search in Google Scholar

Dingyuan F., Jianjun Z. (2007). Nutritional and anti-nutritional composition of rapeseed meal and its utilization as a feed ingredient for animal. International Consultative Group for Research on Rapeseed, Wuhan, China, pp. 265–271.Search in Google Scholar

El-Batal A., Abdel Karem H. (2001). Phytase production and phytic acid reduction in rapeseed meal by Aspergillus niger during solid state fermentation. Food Res. Int., 34: 715–720.10.1016/S0963-9969(01)00093-XSearch in Google Scholar

Fazhi X., Lvmu L., Jiaping X., Kun Q., Zhide Z., Zhangyi L. (2011). Effects of fermented rapeseed meal on growth performance and serum parameters in ducks. Asian Austral. J. Anim. Sci., 24: 678–684.10.5713/ajas.2011.10458Search in Google Scholar

Florou-Paneri P., Christaki E., Giannenas I., Bonos E., Skoufos I., Tsinas A., Tzora A., Peng J. (2014). Alternative protein sources to soybean meal in pig diets. J. Food Agric. Environ., 12: 655–660.Search in Google Scholar

Friendship R.M., Henry S.C. (1996). Cardiovascular system, haematology and clinical chemistry. In: Diseases of swine, Leman A.D., Straw B.E., Mengeling W.L., D’Allaire S., Taylor D.J. (eds). Iowa State Univ. Press, USA, pp. 3–11.Search in Google Scholar

Giannini E., Botta F., Fasoli A., Ceppa P., Risso D., Lantieri P.B., Celle G., Tes-ta R. (1999). Progressive liver functional impairment is associated with an increase in AST/ALT ratio. Dig. Dis. Sci., 44: 1249–1253.Search in Google Scholar

Grela E.R., Czech A., Kiesz M., Wlazło Ł., Nowakowicz-Dębek B. (2019). A fermented rapeseed meal additive: Effects on production performance, nutrient digestibility, colostrum immunoglobulin content and microbial flora in sows. Anim. Nutr., 5: 373–379.10.1016/j.aninu.2019.05.004Search in Google Scholar

Gu C., Pan H., Sun Z., Qin G. (2010). Effect of soybean variety on anti-nutritional factors content, and growth performance and nutrients metabolism in rat. Int. J. Mol. Sci., 11: 1048–1056.10.3390/ijms11031048Search in Google Scholar

Guggenbuhl P., Simões Nunes C. (2007). Effects of two phytases on the ileal apparent digestibility of minerals and amino acids in ileo-rectal anastomosed pigs fed on a maize–rapeseed meal diet. Liv. Sci., 109: 261–263.10.1016/j.livsci.2007.01.110Search in Google Scholar

Hu Y., Ge C., Yuan W., Zhu R., Zhang W., Du L., Xue J. (2010). Characterization of fermented black soybean natto inoculated with Bacillus natto during fermentation. J. Sci. Food Agric., 90: 1194–1202.10.1002/jsfa.3947Search in Google Scholar

Hung A.T.Y., Su T.M., Liao C.W., Lu J.J. (2008). Effect of probiotic combination fermented soybean meal on growth performance, lipid metabolism and immunological response of growing-finishing pigs. Asian J. Anim. Vet. Adv., 3: 431–436.10.3923/ajava.2008.431.436Search in Google Scholar

Iqbal S., Younas U., Sirajuddin Chan K.W., Sarfraz R.A., Uddin K. (2012). Proximate composition and antioxidant potential of leaves from three varieties of Mulberry (Morus sp.): a comparative study. Int. J. Mol. Sci., 13: 6651–6664.10.3390/ijms13066651Search in Google Scholar

Jakobsen G.V., Jensen B.B., Knudsen K.E.B., Canibe N. (2015). Improving the nutritional value of rapeseed cake and wheat dried distillers grains with solubles by addition of enzymes during liquid fermentation. Anim. Feed. Sci. Tech., 208: 198–213.10.1016/j.anifeedsci.2015.07.015Search in Google Scholar

Jensen M.T. (1998). Microbial production of skatole in the digestive tract of entire male pigs. In: Skatole and boar taint, Jensen K. (ed.). Danish Meat Research Institute, Roskilde, pp. 41–75.Search in Google Scholar

Jongbloed A.W., Mroz Z., vander Weij-Jongbloed R., Kemme P.A. (2000). The effects of microbial phytase, organic acids and their interaction in diets for growing pigs. Liv. Prod. Sci., 67: 113–122.10.1016/S0301-6226(00)00179-2Search in Google Scholar

Juanpere J., Pérez-Vendrell A.M., Angulo E., Brufau J. (2005). Assessment of potential interactions between phytase and glycosidase enzyme supplementation on nutrient digestibility in broilers. Poultry Sci., 84: 571–580.10.1093/ps/84.4.571Search in Google Scholar

Kim J.C., Simmins P.H., Mullan B.P., Pluske J.R. (2005). The effect of wheat phosphorus content and supplemental enzymes on digestibility and growth performance of weaner pigs. Anim. Feed Sci. Tech., 118: 139–152.10.1016/j.anifeedsci.2004.08.016Search in Google Scholar

Kim Y.G., Shinde P., Choi J.Y., Kwon M.S., Chae B.J. (2007). Effects of feeding fungal and bacterial fermented soya proteins on blood hematology, enzymes and immune cell populations in weaned pigs. Ann. Anim. Res. Sci., 18: 32–37.Search in Google Scholar

Klem T.B., Bleken E., Morberg H., Thoresen S.I., Framstad T. (2010). Hematologic and biochemical reference intervals for Norwegian crossbreed grower pigs. Vet. Clin. Path., 39: 221–226.10.1111/j.1939-165X.2009.00199.xSearch in Google Scholar

Liesegang A., Loch L., Bürgi E., Risteli J. (2005). Influence of phytase added to a vegetarian diet on bone metabolism in pregnant and lactating sows. J. Anim. Physiol. Anim. Nutr., 89: 120–128.10.1111/j.1439-0396.2005.00549.xSearch in Google Scholar

Marco-Ramell A., Arroyo L., Peña R., Pato R., Saco Y., Fraile L., Bassols A. (2016). Biochemical and proteomic analyses of the physiological response induced by individual housing in gilts provide new potential stress markers. BMC Vet. Res., 12: 265.10.1186/s12917-016-0887-1Search in Google Scholar

Missotten J.A., Michiels J., Degroote J., De Smet S. (2015). Fermented liquid feed for pigs: an ancient technique for the future. J Anim. Sci. Biotechnol., 6: 4.10.1186/2049-1891-6-4Search in Google Scholar

Navarro D.M.D.L., Liu Y., Bruun T.S., Stein H.H. (2017). Amino acid digestibility by wean-ling pigs of processed ingredients originating from soybeans, 00-rapeseeds, or a fermented mixture of plant ingredients. J. Anim. Sci., 95: 2658–2669.10.2527/jas.2016.1356Search in Google Scholar

Nega T. (2018). Review on nutritional limitations and opportunities of using rapeseed meal and other rape seed by-products in animal feeding. J. Nutr. Health Food Eng., 8: 43–48.10.15406/jnhfe.2018.08.00254Search in Google Scholar

NRS (2012). Nutrient Requirements of Swine. 11th rev. ed. National Academies Press, Washington, D.C.Search in Google Scholar

Pedersen C., Boersma M.G., Stein H.H. (2007). Digestibility of energy and phosphorus in ten samples of distillers dried grains with solubles fed to growing pigs. J. Anim. Sci., 85: 1168–1176.10.2527/jas.2006-252Search in Google Scholar

Shi C., He J., Yu J., Yu B., Mao X., Zheng P., Huang Z., Chen D. (2015). Amino acid, phosphorus, and energy digestibility of Aspergillus niger fermented rapeseed meal fed to growing pigs. J. Anim. Sci., 93: 2916–2925.10.2527/jas.2014-8326Search in Google Scholar

Shi C., He J., Wang J., Yu J., Yu B., Mao X., Zheng P., Huang Z., Chen D. (2016). Effects of Aspergillus niger fermented rapeseed meal on nutrient digestibility, growth performance and serum parameters in growing pigs. Anim. Sci. J., 87: 557–563.10.1111/asj.12457Search in Google Scholar

Smiricky-Tjardes M.R., Grieshop C.M., Flickinger E.A., Bauer L.L., Fahey G.C. (2003). Dietary galactooligosacharydes affect ileal total-tract nutrient digestibility, ileal and fecal bacterial concentrations, and ileal fermentative characteristics of growing pigs. J. Anim. Sci., 81: 2535–2545.10.2527/2003.81102535xSearch in Google Scholar

Stein H.H., Sauber T.E., Rice D.W., Hinds M.A., Smith B.L., Dana G., Peters D.N., Hunst P. (2009). Growth performance and carcass composition of pigs fed corn grain from DASØ15Ø7-1 (Herculex I) Hybrids1. Prof. Anim. Sci., 25: 689–694.10.15232/S1080-7446(15)30776-2Search in Google Scholar

Su L.W., Cheng Y.H., Hsiao F.S., Han J.C., Yu Y.H. (2018). Optimization of mixed solid-state fermentation of soybean meal by Lactobacillus species and Clostridium butyricum. Pol. J. Micro-biol., 67: 297–305.10.21307/pjm-2018-035Search in Google Scholar

Swaminathan R. (2001). Biochemical markers of bone turnover. Clin. Chim. Acta, 313: 95–105.10.1016/S0009-8981(01)00656-8Search in Google Scholar

Tomaszewska E., Muszyński S., Dobrowolski P., Kamiński D., Czech A., Gre-la E.R., Wiącek D., Tomczyk-Warunek A. (2019). Dried fermented post-extraction rape-seed meal given to sows as an alternative protein source for soybean meal during pregnancy improves bone development of their offspring. Liv. Sci., 224: 60–68.10.1016/j.livsci.2019.04.009Search in Google Scholar

Vig A.P., Walia A. (2001). Beneficial effects of Rhizopus oligosporus fermentation on reduction of glucosinolates, fibre and phytic acid in rapeseed (Brassica napus) meal. Bioresour. Technol., 78: 309–312.10.1016/S0960-8524(01)00030-XSearch in Google Scholar

Webb P. (2010). Thyroid hormone receptor and lipid regulation. Curr. Opin. Invest. Drugs, 11: 1135–1142.Search in Google Scholar

Winnicka A. (2011). Reference values of basic laboratory tests in veterinary science (in Polish). 5th rev. exp. ed., SGGW, Warszawa.Search in Google Scholar

Woyengo T.A., Beltranena E., Zijlstra R.T. (2017). Effect of anti-nutritional factors of oil-seed co-products on feed intake of pigs and poultry. Anim. Feed. Sci. Tech., 233: 76–86.10.1016/j.anifeedsci.2016.05.006Search in Google Scholar

Yang Y.X., Heo S., Jin Z., Yun J.H., Choi J.Y., Yoon S.Y., Park M.S., Yang B.K., Chae B.J. (2009). Effects of lysine intake during late gestation and lactation on blood metabolites, hormones, milk composition and reproductive performance in primiparous and multiparous sows. Anim Reprod. Sci., 112: 199–214.10.1016/j.anireprosci.2008.04.031Search in Google Scholar

Yonejima Y., Ushida K., Mori Y. (2013). Effect of lactic acid bacteria on lipid metabolism and fat synthesis in mice fed a high-fat diet. Biosci. Microbiota Food Health, 32: 51–58.10.12938/bmfh.32.51Search in Google Scholar

Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Nauki biologiczne, Biotechnologia, Zoologia, Medycyna, Weterynaria