This work is licensed under the Creative Commons Attribution 4.0 International License.
H. Cohen, A Course in Computational Algebraic Number Theory, Graduate Texts in Mathematics, 138, Springer-Verlag, Berlin, 2000.CohenH.A Course in Computational Algebraic Number TheoryGraduate Texts in Mathematics138Springer-VerlagBerlin2000Search in Google Scholar
J. Cullinan, The discriminant of a composition of two polynomials. Available at https://studylib.netCullinanJ.The discriminant of a composition of two polynomialsAvailable at https://studylib.netSearch in Google Scholar
J.B. Dence and T.P. Dence, Elements of the Theory of Numbers, Harcourt/Academic Press, San Diego, CA, 1999.DenceJ.B.DenceT.P.Elements of the Theory of NumbersHarcourt/Academic PressSan Diego, CA1999Search in Google Scholar
N.H. Guersenzvaig, Elementary criteria for irreducibility of f (Xr), Israel J. Math. 169 (2009), 109–123.GuersenzvaigN.H.Elementary criteria for irreducibility of f (Xr)Israel J. Math.1692009109123Search in Google Scholar
J. Harrington and L. Jones, Monogenic cyclotomic compositions, arXiv preprint, 2019. Available at arXiv: 1909.03541HarringtonJ.JonesL.Monogenic cyclotomic compositionsarXiv preprint, 2019. Available at arXiv: 1909.03541Search in Google Scholar
H.A. Helfgott, Square-free values of f (p), f cubic, Acta Math. 213 (2014), no. 1, 107–135.HelfgottH.A.Square-free values of f (p), f cubicActa Math.21320141107135Search in Google Scholar
C. Hooley, Applications of Sieve Methods to the Theory of Numbers, Cambridge Tracts in Mathematics, No. 70, Cambridge University Press, Cambridge-New York-Melbourne, 1976.HooleyC.Applications of Sieve Methods to the Theory of NumbersCambridge Tracts in MathematicsNo. 70,Cambridge University PressCambridge-New York-Melbourne1976Search in Google Scholar
L. Jones, Infinite families of reciprocal monogenic polynomials and their Galois groups, New York J. Math. 27 (2021), 1465–1493.JonesL.Infinite families of reciprocal monogenic polynomials and their Galois groupsNew York J. Math.27202114651493Search in Google Scholar
L. Jones, Reciprocal monogenic quintinomials of degree 2n, Bull. Aust. Math. Soc. 106 (2022), no. 3, 437–447.JonesL.Reciprocal monogenic quintinomials of degree 2nBull. Aust. Math. Soc.10620223437447Search in Google Scholar
J. Neukirch, Algebraic Number Theory, Grundlehren Math. Wiss., 322 [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, 1999.NeukirchJ.Algebraic Number TheoryGrundlehren Math. Wiss.322[Fundamental Principles of Mathematical Sciences],Springer-VerlagBerlin1999Search in Google Scholar
H. Pasten, The ABC conjecture, arithmetic progressions of primes and squarefree values of polynomials at prime arguments, Int. J. Number Theory 11 (2015), no. 3, 721–737.PastenH.The ABC conjecture, arithmetic progressions of primes and squarefree values of polynomials at prime argumentsInt. J. Number Theory1120153721737Search in Google Scholar
L.C. Washington, Introduction to Cyclotomic Fields, Second edition, Graduate Texts in Mathematics, 83, Springer-Verlag, New York, 1997.WashingtonL.C.Introduction to Cyclotomic FieldsSecond editionGraduate Texts in Mathematics83Springer-VerlagNew York1997Search in Google Scholar