Accesso libero

Reciprocal Monogenic Septinomials of Degree 2n3

  
21 feb 2024
INFORMAZIONI SU QUESTO ARTICOLO

Cita
Scarica la copertina

H. Cohen, A Course in Computational Algebraic Number Theory, Graduate Texts in Mathematics, 138, Springer-Verlag, Berlin, 2000. CohenH. A Course in Computational Algebraic Number Theory Graduate Texts in Mathematics 138 Springer-Verlag Berlin 2000 Search in Google Scholar

J. Cullinan, The discriminant of a composition of two polynomials. Available at https://studylib.net CullinanJ. The discriminant of a composition of two polynomials Available at https://studylib.net Search in Google Scholar

J.B. Dence and T.P. Dence, Elements of the Theory of Numbers, Harcourt/Academic Press, San Diego, CA, 1999. DenceJ.B. DenceT.P. Elements of the Theory of Numbers Harcourt/Academic Press San Diego, CA 1999 Search in Google Scholar

N.H. Guersenzvaig, Elementary criteria for irreducibility of f (Xr), Israel J. Math. 169 (2009), 109–123. GuersenzvaigN.H. Elementary criteria for irreducibility of f (Xr) Israel J. Math. 169 2009 109 123 Search in Google Scholar

J. Harrington and L. Jones, Monogenic cyclotomic compositions, arXiv preprint, 2019. Available at arXiv: 1909.03541 HarringtonJ. JonesL. Monogenic cyclotomic compositions arXiv preprint, 2019. Available at arXiv: 1909.03541 Search in Google Scholar

H.A. Helfgott, Square-free values of f (p), f cubic, Acta Math. 213 (2014), no. 1, 107–135. HelfgottH.A. Square-free values of f (p), f cubic Acta Math. 213 2014 1 107 135 Search in Google Scholar

C. Hooley, Applications of Sieve Methods to the Theory of Numbers, Cambridge Tracts in Mathematics, No. 70, Cambridge University Press, Cambridge-New York-Melbourne, 1976. HooleyC. Applications of Sieve Methods to the Theory of Numbers Cambridge Tracts in Mathematics No. 70, Cambridge University Press Cambridge-New York-Melbourne 1976 Search in Google Scholar

L. Jones, Infinite families of reciprocal monogenic polynomials and their Galois groups, New York J. Math. 27 (2021), 1465–1493. JonesL. Infinite families of reciprocal monogenic polynomials and their Galois groups New York J. Math. 27 2021 1465 1493 Search in Google Scholar

L. Jones, Reciprocal monogenic quintinomials of degree 2n, Bull. Aust. Math. Soc. 106 (2022), no. 3, 437–447. JonesL. Reciprocal monogenic quintinomials of degree 2n Bull. Aust. Math. Soc. 106 2022 3 437 447 Search in Google Scholar

J. Neukirch, Algebraic Number Theory, Grundlehren Math. Wiss., 322 [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, 1999. NeukirchJ. Algebraic Number Theory Grundlehren Math. Wiss. 322 [Fundamental Principles of Mathematical Sciences], Springer-Verlag Berlin 1999 Search in Google Scholar

H. Pasten, The ABC conjecture, arithmetic progressions of primes and squarefree values of polynomials at prime arguments, Int. J. Number Theory 11 (2015), no. 3, 721–737. PastenH. The ABC conjecture, arithmetic progressions of primes and squarefree values of polynomials at prime arguments Int. J. Number Theory 11 2015 3 721 737 Search in Google Scholar

L.C. Washington, Introduction to Cyclotomic Fields, Second edition, Graduate Texts in Mathematics, 83, Springer-Verlag, New York, 1997. WashingtonL.C. Introduction to Cyclotomic Fields Second edition Graduate Texts in Mathematics 83 Springer-Verlag New York 1997 Search in Google Scholar

Lingua:
Inglese
Frequenza di pubblicazione:
2 volte all'anno
Argomenti della rivista:
Matematica, Matematica generale