Otwarty dostęp

Research on heat transfer properties of graphene composites

   | 10 lis 2022

Zacytuj

Y. Zhang, T. Qian, W. Tang, Buildings-to-distribution-network integration considering power transformer loading capability and distribution network reconfiguration, Energy 244 (2022). Search in Google Scholar

A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene, Nano Letters 8(3) (2008) 902. Search in Google Scholar

T. Qian, X. Chen, Y. Xin, W.H. Tang, L. Wang, Resilient Decentralized Optimization of Chance Constrained Electricity-gas Systems over Lossy Communication Networks, Energy (2021). Search in Google Scholar

Carbon Nanosheets for Polymeric Nanocomposites with High Thermal Conductivity, Advanced Materials (2009). Search in Google Scholar

S.D. Park, S.W. Lee, S. Kang, I.C. Bang, H.K. Ji, H.S. Shin, W.L. Dong, W.L. Dong, Effects of nanofluids containing graphene/graphene-oxide nanosheets on critical heat flux, Applied Physics Letters 97(2) (2010) 718. Search in Google Scholar

Anonymous, Using graphene, scientists develop a less toxic way to rust-proof steel, Biomedical Market Newsletter 59(6) (2012) 317-317. Search in Google Scholar

B. Zhao, T. Qian, W.H. Tang, A Data-enhanced Distributionally Robust Optimization Method for Economic Dispatch of Integrated Electricity and Natural Gas Systems with Wind Uncertainty, (2021). Search in Google Scholar

Tong, Qian, Yang, Liu, Wenhao, Zhang, Wenhu, Tang, Mohammad, Shahidehpour, Event-Triggered Updating Method in Centralized and Distributed Secondary Controls for Islanded Microgrid Restoration, IEEE Transactions on Smart Grid PP(99) (2019) 1-1. Search in Google Scholar

D.L. Nika, E.P. Pokatilov, A.A. Balandin, Theoretical description of thermal transport in graphene: The issues of phonon cut-off frequencies and polarization branches, (2011). Search in Google Scholar

L.X. Benedict, S.G. Louie, M.L. Cohen, Heat capacity of carbon nanotubes, Solid State Communications 100(3) (1996) 177-180. Search in Google Scholar

L.A. Schlie, H. Ma, Active Cooling of High Speed Seeker Missile Domes and Radomes, 2014. Search in Google Scholar

D.L. Nika, S. Ghosh, E.P. Pokatilov, A.A. Balandin, Lattice thermal conductivity of graphene flakes: Comparison with bulk graphite, Applied Physics Letters (2009). Search in Google Scholar

D.L. Nika, E.P. Pokatilov, A.S. Askerov, A.A. Balandin, Phonon thermal conduction in graphene: Role of Umklapp and edge roughness scattering, Physical Review B 79(15) (2009) 155413. Search in Google Scholar

M.A. Osman, D. Srivastava, Molecular dynamics simulation of heat pulse propagation in single-wall carbon nanotubes, Physical Review B 72(12) (2005) p.125413.1-125413.7. Search in Google Scholar

J. Zhang, X. Huang, Y. Yue, J. Wang, X. Wang, Dynamic response of graphene to thermal impulse, University of Notre Dame Press (2011). Search in Google Scholar

L. Lindsay, D.A. Broido, N. Mingo, Flexural phonons and thermal transport in graphene, Physical review. B, Condensed matter 82(11) (2010) 1321–1330. Search in Google Scholar

Two-Dimensional Phonon Transport in Supported Graphene, Science 328(Apr.9 TN.5975) (2010) 213-216. Search in Google Scholar

Y. Agari, T. Uno, Thermal conductivity of polymer filled with carbon materials: Effect of conductive particle chains on thermal conductivity, Journal of Applied Polymer Science (1985). Search in Google Scholar

T.B. Lewis, L.E. Nielsen, Dynamic mechanical properties of particulate-filled composites, Journal of Applied Polymer Science (1970). Search in Google Scholar

Y. Agari, T. Uno, Estimation on thermal conductivities of filled polymers, Journal of Applied Polymer Science 32(7) (2010) 5705-5712. Search in Google Scholar

S. Ghosh, W. Bao, D.L. Nika, S. Subrina, E.P. Pokatilov, C.N. Lau, A.A. Balandin, Dimensional crossover of thermal transport in few-layer graphene, Nature Materials 9(7) (2010) 555-8. Search in Google Scholar

C. Faugeras, B. Faugeras, M. Orlita, M. Potemski, R.R. Nair, A.K. Geim, Thermal conductivity of graphene in Corbino membrane geometry, ACS nano 2010 Vol. 4, no. 4(4) (2018), p. 1889–92. Search in Google Scholar

W. Cai, A. Moore, S. Chen, Y. Zho, L. Shi, R.S. Ruoff, Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition, APS March Meeting 2011, 2011. Search in Google Scholar

T. Schwamb, B.R. Burg, N.C. Schirmer, D. Poulikakos, An electrical method for the measurement of the thermal and electrical conductivity of reduced graphene oxide nanostructures, Nanotechnology 20(40) (2009) 405704. Search in Google Scholar

C. Vallés, J. Nú?Ez, A.M. Benito, W.K. Maser, Flexible conductive graphene paper obtained by direct and gentle annealing of graphene oxide paper, Carbon 50(3) (2012) 835-844. Search in Google Scholar

D. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R.D. Piner, S. Stankovich, I. Jung, D.A. Field, C.A. Ventrice, Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy, CARBON-AMERICAN CARBON COMMITTEE-(2009). Search in Google Scholar

Z.Q. Ye, B.Y. Cao, Z.Y. Guo, Study on thermal characteristics of phonons in graphene, Acta Physica Sinica 63(15) (2014) 3485–3488. Search in Google Scholar

R. Chellattoan, S.P. Sathian, The effect of torsional deformation on thermal conductivity of mono-, bi- and trilayer graphene nanoribbon, Solid State Communications 173(11) (2013) 1-4. Search in Google Scholar

J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth, S. Roth, The structure of suspended graphene sheets. Search in Google Scholar

J.C.M.A. B, A.K.G. C, M.I.K. D, K.S.N. C, D.O. E, S.R. E, C.G.A. B, A.Z.A. B, On the roughness of single- and bi-layer graphene membranes, Solid State Communications 143(1–2) (2007) 101-109. Search in Google Scholar

M. Wojtaszek, N. Tombros, A. Caretta, P.V. Loosdrecht, B.V. W Ee S, A road to hydrogenating graphene by a reactive ion etching plasma, Journal of Applied Physics 110(6) (2011) 063715-. Search in Google Scholar

Z. Wei, Z. Ni, K. Bi, M. Chen, Y. Chen, In-plane lattice thermal conductivities of multilayer graphene films, Carbon 49(8) (2011) 2653-2658. Search in Google Scholar

X. Gong, Layer and size dependence of thermal conductivity in multilayer graphene nanoribbons, Physics Letters A (2012). Search in Google Scholar

V. Varshney, S.S. Patnaik, A.K. Roy, G. Frou Da Kis, B.L. Farmer, Modeling of thermal transport in pillared-graphene architectures, Acs Nano 4(2) (2010) 1153-61. Search in Google Scholar

A. Garg, V. Vijayaraghavan, C.H. Wong, K. Tai, L. Gao, An embedded simulation approach for modeling the thermal conductivity of 2D nanoscale material, Simulation Modelling Practice & Theory 44 (2014) 1-13. Search in Google Scholar

N. Khosravian, M.K. Samani, G.C. Loh, G.C.K. Chen, D. Baillargeat, B.K. Tay, Effects of a grain boundary loop on the thermal conductivity of graphene: A molecular dynamics study, Computational Materials Science 79(Complete) (2013) 132-135. Search in Google Scholar

X. Sun, H. Sun, H. Li, H. Peng, Developing Polymer Composite Materials: Carbon Nanotubes or Graphene?, Advanced Materials 25(37) (2013). Search in Google Scholar

M. Terrones, A. Botello-Méndez, J. Campos-Delgado, F. López-Urías, Y. Vega-Cantú, F. Rodríguez-Macías, A. Elías, E. Mu?Oz-Sandoval, A. Cano-Márquez, J.C. Charlier, Graphene and graphite nanoribbons: Morphology, properties, synthesis, defects and applications, Nano Today 5(4) (2010) 351-372. Search in Google Scholar

M.R. Guo, W. Zhou, T. Zhou, Z.Q. Sun, J.M. Zhou, Investigation on the thermophysical properties of graphene/paraffin composites, Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics 35(6) (2014) 1200-1205. Search in Google Scholar

C. Heo, J.H. Chang, Polyimide nanocomposites based on functionalized graphene sheets: Morphologies, thermal properties, and electrical and thermal conductivities, Solid State Sciences 24(Complete) (2013) 6-14. Search in Google Scholar

Q. Ding, X. Fang, L. Fan, X.U. Xu, Y.U. Zitao, H.U. Yacai, Influence of 2-D nanofillers on the thermal conductivity of composite PCMs, Energy Storage Science and Technology (2014). Search in Google Scholar

eISSN:
2444-8656
Język:
Angielski
Częstotliwość wydawania:
Volume Open
Dziedziny czasopisma:
Life Sciences, other, Mathematics, Applied Mathematics, General Mathematics, Physics