1. bookTom 8 (2023): Zeszyt 1 (January 2023)
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
2444-8656
Pierwsze wydanie
01 Jan 2016
Częstotliwość wydawania
2 razy w roku
Języki
Angielski
Otwarty dostęp

Application of data mining in basketball statistics

Data publikacji: 29 Apr 2022
Tom & Zeszyt: Tom 8 (2023) - Zeszyt 1 (January 2023)
Zakres stron: 2179 - 2188
Otrzymano: 05 Jan 2022
Przyjęty: 23 Feb 2022
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
2444-8656
Pierwsze wydanie
01 Jan 2016
Częstotliwość wydawania
2 razy w roku
Języki
Angielski

Fig. 1

The influence weights of three weighting modes on matches, for the past 10 matches
The influence weights of three weighting modes on matches, for the past 10 matches

Fig. 2

Feature importance ranking
Feature importance ranking

Fig. 3

Correlation matrix
Correlation matrix

Fig. 4

Neural network model training effect
Neural network model training effect

Fig. 5

Comparison between predicted and actual values
Comparison between predicted and actual values

Leung C K, Joseph K W. Sports data mining: predicting results for the college football games [J]. Procedia Computer Science, 2014, 35:710-719 Search in Google Scholar

Dean Oliver. Basketball on Paper. Brassey’s, Inc., 2002. Search in Google Scholar

Christopher Barry, Nicholas Canova, and Kevin Capiz. Beating Draftkings at Daily Fantasy Sports. 2017. [Online; Accessed 04-May-2018]. Search in Google Scholar

Loeffelholz Bernard, Bednar Earl, and Bauer Kenneth W. Predicting nba games using neural networks. Journal of Quantitative Analysis in Sports, 5(1):1–17, January 2009. Search in Google Scholar

Kou-Yuan Huang and Wen-Lung Chang. A neural network method for prediction of 2006 world cup football game. In IJCNN, pages 1–8. IEEE, 2010. Search in Google Scholar

S. P. Kvam and J. S. Sokol. A logistic regression/Markov chain model for ncaa basketball. Naval Research Logistics, 53:788–803, 2006. Search in Google Scholar

M.C. Purucker. Neural network quarterbacking. Potentials, IEEE, 15(3):9–15, 1996. Search in Google Scholar

DraftKings. NBA: Rules & Scoring, 2018. [Online; Accessed 11-May-2018]. Search in Google Scholar

Mark Brown, Paul Kvam, George Nemhauser, and Joel Sokol. Insights from the LRMC method for NCAA tournament predictions. In MIT Sloan Sports Conference, March 2012. Search in Google Scholar

Tianqi Chen. Introduction to Boosted Trees, n.d. [Online; Accessed 15-May-2018]. Search in Google Scholar

Schulte O, Khademi M, Gholami S, et al. A Markov game model for valuing actions, locations, and team performance in ice hockey[J]. Data Mining & Knowledge Discovery, 2017, 31(5814):1-23 Search in Google Scholar

Saikia H, Bhattacharjee D, Lemmer H. Predicting the Performance of Bowlers in IPL: An application of artificial neural network[J]. International Journal of Performance Analysis in Sport, 2012, 12(12):75-89(15) Search in Google Scholar

Milich R, Murphy D A. Appliance of neural networks in basketball scouting[J]. Acta Polytechnica Hungarica, 2010, 7(4):201-213 Search in Google Scholar

Carpita M, Sandri M, Simonetto A, et al. Discovering the drivers of football match outcomes with data mining[J]. Quality Technology & Quantitative Management, 2015, 12(4):561-577 Search in Google Scholar

Polecane artykuły z Trend MD