Otwarty dostęp

The Marichev-Saigo-Maeda Fractional Calculus Operators Pertaining to the Generalized K-Struve Function


Zacytuj

Introduction and Preliminaries

The Wright function play an important role in the partial differential equation of fractional order which is familiar and extensively treated in papers by a number of authors including Gorenflo et al. [6].

For ςi, τj ∈ ℝ\{0} and ai,bj ∈ ℂ,i = (1̅, p); j = (1̅,q) the generalized form of Wright function is defined by Wright ([13,14,15,16,17]) as following: pΨq(z)=pΨq[(ai,ςi)1,p(bj,τj)1,q|z]=n=0i=1pΓ(ai+nςi)j=1qΓ(bj+nτj)znn!,z,_p{\Psi _q}(z{) = _p}{\Psi _q}\left[ {\matrix{ {{{({a_i},{\varsigma _i})}_{1,p}}} \cr {{{({b_j},{\tau _j})}_{1,q}}} \cr } |z} \right] = \sum\limits_{n = 0}^\infty {{\prod\nolimits_{i = 1}^p \Gamma ({a_i} + n{\varsigma _i})} \over {\prod\nolimits_{j = 1}^q \Gamma ({b_j} + n{\tau _j})}}{{{z^n}} \over {n!}},z \in \mathbb{C}, where Γ (z) is the well-known Euler gamma function [4].The condition for existence of (1.1) with its depiction in terms of Mellin-Barnes integral and the H-function were obtained by Kilbas et al. [10].

The generalized form of the above Wright function (1.1) was given by Gehlot and Prajapati [5], named as generalized K-Wright function which is defined as pΨqk(z)=pΨqk[(ai,ςi)1,p(bj,τj)1,q|z]=n=0i=1pΓk(ai+nςi)j=1qΓk(bj+nτj)znn!,z,_p\Psi _q^k(z{) = _p}\Psi _q^k\left[ {\matrix{ {{{({a_i},{\varsigma _i})}_{1,p}}} \cr {{{({b_j},{\tau _j})}_{1,q}}} \cr } |z} \right] = \sum\limits_{n = 0}^\infty {{\prod\nolimits_{i = 1}^p {\Gamma _k}({a_i} + n{\varsigma _i})} \over {\prod\nolimits_{j = 1}^q {\Gamma _k}({b_j} + n{\tau _j})}}{{{z^n}} \over {n!}},z \in \mathbb{C}, where k ∈ ℝ+ and (ai + i), (bj + j) ∈ ℂ\k for all n ∈ ℕ0. The generalized k-gamma function [3] is defined as Γk(z)=0etkktz1dt;((z)>0;k+){\Gamma _k}(z) = \int_0^\infty {e^{ - {{{t^k}} \over k}}}{t^{z - 1}}dt;\;\;(\Re (z) > 0;\;k \in {\mathbb{R}^ + }) and Γk(z)=limnn!kn(nk)zk1(z)n,k,k+,z\k{\Gamma _k}(z) = \mathop {\lim }\limits_{n \to \infty } {{n!{k^n}{{(nk)}^{{z \over k} - 1}}} \over {{{(z)}_{n,k}}}},\;\;k \in {\mathbb{R}^ + },\;z \in \backslash k{\mathbb{Z}^ - } Also Γk(z)=kzk1Γ(zk),{\Gamma _k}(z) = {k^{{z \over k} - 1}}\Gamma \left( {{z \over k}} \right), where (z)n,k is the k-Pochammer symbol introduced by Diaz and Pariguan [3] defined for complex z ∈ ℂ and k ∈ ℝ as (z)n,k={1ifn=0,z(z+k)(z+2k)(z+(n1)k)ifn.}{(z)_{n,k}} = \left\{ {\matrix{ 1 & {if\;\;n = 0,} \cr {z(z + k)(z + 2k) \ldots (z + (n - 1)k)} & {if\;\;n \in \mathbb{N}.} \cr } } \right\} On taking k = 1, then the generalized K-Wright function (1.2) diminishes to the generalized Wright function (1.1).

Saigo fractional calculus operators

Saigo [18] defined the fractional integral and differential operators with the Gauss hyergeometric function as kernel, which are remarkable generalizations of the Riemann-Liouville (R-L) and Erdélyi-Kober fractional calculus operators (see; [11]).

For ς, τ, γ ∈ ℂ and x ∈ ℝ+ with ℜ(ς) > 0, the left-hand and the right-hand sided generalized fractional integral operators connected with Gauss hypergeometric function are defined as below: (I0+ς,τ,γf)(x)=xςτΓ(ς)0x(xt)ς12F1(ς+τ,γ;ς;1tx)f(t)dt(I_{0 + }^{\varsigma ,\tau ,\gamma }f)(x) = {{{x^{ - \varsigma - \tau }}} \over {\Gamma (\varsigma )}}\int_0^x {(x - t)^{\varsigma - 1}}_2{F_1}(\varsigma + \tau , - \gamma ;\varsigma ;1 - {t \over x})f(t)dt and (Iς,τ,γf)(x)=1Γ(ς)x(tx)ς1tς+τ2F1(ς+τ,γ;ς;1xt)f(t)dt(I_ - ^{\varsigma ,\tau ,\gamma }f)(x) = {1 \over {\Gamma (\varsigma )}}\int_x^\infty {{{{{(t - x)}^{\varsigma - 1}}} \over {{t^{\varsigma + \tau }}}}{_2}}{F_1}(\varsigma + \tau , - \gamma ;\varsigma ;1 - {x \over t})f(t)dt respectively. Here, 2F1(ς, τ; γ; z) is the Gauss hypergeometric function [11] defined for z ∈ ℂ, |z| < 1 and ς, τ ∈ ℂ, γ\0\gamma \in \mathbb{C} \backslash \mathbb{Z}_0^ - by 2F1(ς,τ;γ;z)=n=0(ς)n(τ)n(γ)nznn!,_2{F_1}(\varsigma ,\tau ;\gamma ;z) = \sum\limits_{n = 0}^\infty {{{{(\varsigma )}_n}{{(\tau )}_n}} \over {{{(\gamma )}_n}}}{{{z^n}} \over {n!}}, where (z)n = (z)n,1. The corresponding fractional differential operators are (D0+ς,τ,γf)(x)=(ddx)l(I0+ς+l,τl,ς+γlf)(x)(D_{0 + }^{\varsigma ,\tau ,\gamma }f)(x) = {\left( {{d \over {dx}}} \right)^l}(I_{0 + }^{ - \varsigma + l, - \tau - l,\varsigma + \gamma - l}f)(x) and (Dς,τ,γf)(x)=(ddx)l(Iς+l,τl,ς+γf)(x)(D_ - ^{\varsigma ,\tau ,\gamma }f)(x) = {\left( { - {d \over {dx}}} \right)^l}(I_ - ^{ - \varsigma + l, - \tau - l,\varsigma + \gamma }f)(x) where l = [ℜ (ς)] + 1 and [ℜ (ς)] is the integer part of ℜ(ς). Substituting τ = −ς and τ = 0 in equation (1.7) – (1.10), we get the corresponding R-L and Erdélyi-Kober fractional operators, respectively.

Marichev-Saigo-Maeda fractional operators

Marichev [13] was introduced and studied fractional calculus operators which are the generalization of the Saigo operators, later generalized by Saigo and Maeda [19]. For ς, ς′, τ, τ′, γ ∈ ℂ and x ∈ ℝ+ with ℜ(γ) > 0, the left-hand and right-hand sided MSM fractional integral and derivative operators associated with third Appell function F3 are defined as (I0+ς,ς,τ,τ,γf)(x)=xςΓ(γ)0x(xt)γ1tςF3(ς,ς,τ,τ,γ,1tx,1xt)f(t)dt(I_{0 + }^{\varsigma ,\varsigma ',\tau ,\tau ',\gamma }f)(x) = {{{x^{ - \varsigma }}} \over {\Gamma (\gamma )}}\int_0^x {{{{(x - t)}^{\gamma - 1}}} \over {{t^{\varsigma '}}}}{F_3}(\varsigma ,\varsigma ',\tau ,\tau ,\gamma ,1 - {t \over x},1 - {x \over t})f(t)dt and (Iς,ς,τ,τ,γf)(x)=xςΓ(γ)x(tx)γ1tςF3(ς,ς,τ,τ,γ,1xt,1tx)f(t)dt(I_ - ^{\varsigma ,\varsigma ',\tau ,\tau ',\gamma }f)(x) = {{{x^{ - \varsigma '}}} \over {\Gamma (\gamma )}}\int_x^\infty {{{{(t - x)}^{\gamma - 1}}} \over {{t^\varsigma }}}{F_3}(\varsigma ,\varsigma ',\tau ,\tau ,\gamma ,1 - {x \over t},1 - {t \over x})f(t)dt(D0+ς,ς,τ,τ,γf)(x)=(ddx)m(I0+ς,ς,τ+m,τ,γ+mf)(x)(D_{0 + }^{\varsigma ,\varsigma ',\tau ,\tau ',\gamma }f)(x) = {\left( {{d \over {dx}}} \right)^m}(I_{0 + }^{ - \varsigma ', - \varsigma , - \tau ' + m, - \tau , - \gamma + m}f)(x) and (Dς,ς,τ,τ,γf)(x)=(ddx)m(Iς,ς,τ,τ+m,γ+mf)(x)(D_ - ^{\varsigma ,\varsigma ',\tau ,\tau ',\gamma }f)(x) = {\left( { - {d \over {dx}}} \right)^m}(I_ - ^{ - \varsigma ', - \varsigma , - \tau ', - \tau + m, - \gamma + m}f)(x) respectively, where m = [ℜ(γ)] + 1 and the third Appell function [17], is defined by F3(ς,ς,τ,τ,γ;x,y)=m,n,=0(ς)m(ς)n(τ)m(τ)n(γ)m+nxmynm!n!,max{|x|,|y|}<1.{F_3}(\varsigma ,\varsigma ',\tau ,\tau ',\gamma ;x,y) = \sum\limits_{m,n, = 0}^\infty {{{{(\varsigma )}_m}{{(\varsigma ')}_n}{{(\tau )}_m}{{(\tau ')}_n}} \over {{{(\gamma )}_{m + n}}}}{{{x^m}{y^n}} \over {m!n!}},\;\;\;\max \{ |x|,|y|\} < 1.

Generalized k-Struve function

The generalized k-Struve function was defined by Nisar et al. [14] as Sν,ck(t)=n=0(c)nΓk(nk+ν+3k2)Γ(n+32)n!(t2)2n+νk+1(k+;c;ν>1)\matrix{ {S_{\nu ,c}^k(t) = \sum\limits_{n = 0}^\infty {{{{( - c)}^n}} \over {{\Gamma _k}(nk + \nu + {{3k} \over 2})\Gamma (n + {3 \over 2})n!}}{{\left( {{t \over 2}} \right)}^{2n + {\nu \over k} + 1}}} \cr {(k \in {\mathbb{R}^ + };c \in \mathbb{R};\nu > - 1)} \cr } taking k→ 1 and c = 1; (1.15) reduces to yield the well-known Struve function of order ν is defined by [1] as Hν(t)=n=0(1)nΓ(n+ν+32)Γ(n+32)n!(t2)2n+ν+1{H_\nu }(t) = \sum\limits_{n = 0}^\infty {{{{( - 1)}^n}} \over {\Gamma (n + \nu + {3 \over 2})\Gamma (n + {3 \over 2})n!}}{\left( {{t \over 2}} \right)^{2n + \nu + 1}} For more details about Struve functions, their generalizations and properties, the esteemed reader is invited to consider references [2, 7, 8, 14, 15, 20,21,22].

The following MSM integral operators are required here [19, p. 394] to obtain the MSM fractional integration of generalized k-Struve function.

Lemma 1

Let ς, ς′, τ, τ′, γ, ρ ∈ ℂ such that ℜ(ς) > 0

ℜ(ρ) > 0 max{0,ℜ(ς′ − τ′),ℜ(ς + ς′ + τγ)}, then (I0+ς,ς,τ,τ,γtρ1)(x)=Γ(ρ)Γ(ς+τ+ρ)Γ(ςςτ+γ+ρ)Γ(τ+ρ)Γ(ςς+γ+ρ)Γ(ςτ+γ+ρ)xςς+γ+ρ1(I_{0 + }^{\varsigma ,\varsigma ',\tau ,\tau ',\gamma }{t^{\rho - 1}})(x) = {{\Gamma (\rho )\Gamma ( - \varsigma ' + \tau ' + \rho )\Gamma ( - \varsigma - \varsigma ' - \tau + \gamma + \rho )} \over {\Gamma (\tau ' + \rho )\Gamma ( - \varsigma - \varsigma ' + \gamma + \rho )\Gamma ( - \varsigma ' - \tau + \gamma + \rho )}}{x^{ - \varsigma - \varsigma ' + \gamma + \rho - 1}}

If ℜ(ρ) > max{ℜ(τ),ℜ(−ςς′ + γ),ℜ(−ςτ′ + γ}, then (Iς,ς,τ,τ,γtρ)(x)=Γ(τ+ρ)Γ(ς+ςγ+ρ)Γ(ς+τγ+ρ)Γ(ρ)Γ(ςτ+ρ)Γ(ς+ς+τγ+ρ)xςς+γρ(I_ - ^{\varsigma ,\varsigma ',\tau ,\tau ',\gamma }{t^{ - \rho }})(x) = {{\Gamma ( - \tau + \rho )\Gamma (\varsigma + \varsigma ' - \gamma + \rho )\Gamma (\varsigma + \tau ' - \gamma + \rho )} \over {\Gamma (\rho )\Gamma (\varsigma - \tau + \rho )\Gamma (\varsigma + \varsigma ' + \tau ' - \gamma + \rho )}}{x^{ - \varsigma - \varsigma ' + \gamma - \rho }}

Further, to obtain the MSM fractional differentiation of the generalized k-Struve function, following results will be used from [9] as below:

Lemma 2

Let ς, ς′, τ, τ′, γ, ρ ∈ ℂ, such that ℜ(ς) > 0;

If ℜ(ρ) > max{0,ℜ(−ς + τ),ℜ(−ςς′ − τ′ + γ)} (D0+ς,ς,τ,τ,γtρ1)(x)=Γ(ρ)Γ(τ+ς+ρ)Γ(ς+ς+τγ+ρ)Γ(τ+ρ)Γ(ς+ςγ+ρ)Γ(ς+τγ+ρ)xς+ςγ+ρ1(D_{0 + }^{\varsigma ,\varsigma ',\tau ,\tau ',\gamma }{t^{\rho - 1}})(x) = {{\Gamma (\rho )\Gamma ( - \tau + \varsigma + \rho )\Gamma (\varsigma + \varsigma ' + \tau ' - \gamma + \rho )} \over {\Gamma ( - \tau + \rho )\Gamma (\varsigma + \varsigma ' - \gamma + \rho )\Gamma (\varsigma + \tau ' - \gamma + \rho )}}{x^{\varsigma + \varsigma ' - \gamma + \rho - 1}}

If ℜ(ρ) > max{ℜ(−τ′),ℜ(ς′ + τγ),ℜ(ς + ς′ − γ) + [ℜ(γ)] + 1}, then (Dς,ς,τ,τ,γtρ)(x)=Γ(τ+ρ)Γ(ςς+γ+ρ)Γ(ςτ+γ+ρ)Γ(ρ)Γ(ς+τ+ρ)Γ(ςςτ+γ+ρ)xς+ςγρ(D_ - ^{\varsigma ,\varsigma ',\tau ,\tau ',\gamma }{t^{ - \rho }})(x) = {{\Gamma (\tau ' + \rho )\Gamma ( - \varsigma - \varsigma ' + \gamma + \rho )\Gamma ( - \varsigma ' - \tau + \gamma + \rho )} \over {\Gamma (\rho )\Gamma ( - \varsigma ' + \tau ' + \rho )\Gamma ( - \varsigma - \varsigma ' - \tau + \gamma + \rho )}}{x^{\varsigma + \varsigma ' - \gamma - \rho }}

Fractional Calculus Approach

In this section, the following six theorems for k-Struve function concerning to MSM fractional integral and differential operators are established here as main results.

Theorem 1

Let ς, ς′, τ, tau′, γ, ρ ∈ ℂ and k ∈ ℝ+ be such that (γ)>0,(λk)>max{0,(ςτ),(ς+ς+τγ)}\Re (\gamma ) > 0,\Re \left( {{\lambda \over k}} \right) > \max \{ 0,\Re (\varsigma ' - \tau '),\Re (\varsigma + \varsigma ' + \tau - \gamma )\} . Also let c ∈ ℝ; ν > −1, then for t > 0 (I0+ς,ς,τ,τ,γ(tλk1Sν,ck(t)))(x)=kγ+12xςς+γ+λk+νk2νk+1×3Ψ5k[(λ+ν+k,2k),(kς+kτ+λ+ν+k,2k),(kτ+λ+ν+k,2k),(kςkς+kγ+λ+ν+k,2k),(kςkςkτ+kγ+λ+ν+k,2k)(kςkτ+kγ+λ+ν+k,2k),(ν+3k2,k),(3k2,k)|cx2k4].\matrix{ {\left( {I_{0 + }^{\varsigma ,\varsigma ',\tau ,\tau ',\gamma }\left( {{t^{{\lambda \over k} - 1}}S_{\nu ,c}^k(t)} \right)} \right)(x) = {{{k^{\gamma + {1 \over 2}}}{x^{ - \varsigma - \varsigma ' + \gamma + {\lambda \over k} + {\nu \over k}}}} \over {{2^{{\nu \over k} + 1}}}}} \hfill \cr {{ \times _3}\Psi _5^k\left[ {\matrix{ {(\lambda + \nu + k,2k),} & {( - k\varsigma ' + k\tau ' + \lambda + \nu + k,2k),} \cr {(k\tau ' + \lambda + \nu + k,2k),} & {( - k\varsigma - k\varsigma ' + k\gamma + \lambda + \nu + k,2k),} \cr } } \right.} \hfill \cr {\left. {\matrix{ {( - k\varsigma - k\varsigma ' - k\tau + k\gamma + \lambda + \nu + k,2k)} & {} \cr {( - k\varsigma ' - k\tau + k\gamma + \lambda + \nu + k,2k),} & {(\nu + {{3k} \over 2},k),({{3k} \over 2},k)}\cr } \;\;|{{ - c{x^2}k} \over 4}} \right].} \hfill \cr }

Proof

On using (1.16) and taking the left-hand sided MSM fractional integral operator inside the summation, the left-hand side of (2.1) becomes =n=0(c)nΓk(nk+ν+3k2)Γ(n+32)n!22n+νk+1(I0+ς,ς,τ,τ,γ{tλk+νk+2n})(x), = \sum\limits_{n = 0}^\infty {{{{( - c)}^n}} \over {{\Gamma _k}(nk + \nu + {{3k} \over 2})\Gamma (n + {3 \over 2})n{{!2}^{2n + {\nu \over k} + 1}}}}\left( {I_{0 + }^{\varsigma ,\varsigma ',\tau ,\tau ',\gamma }\{ {t^{{\lambda \over k} + {\nu \over k} + 2n}}\} } \right)(x), Making use of (1.18), we obtain =n=0(c)nxςς+γλk+νk+2nΓk(nk+ν+3k2)Γ(n+32)n!22n+νk+1Γ(λk+νk+2n+1)Γ(τ+λk+νk+2n+1)×Γ(ςςτ+γ+λk+νk+2n+1)Γ(ς+τ+λk+νk+2n+1)Γ(ςτ+γ+λk+νk+2n+1)Γ(ςς+γ+λkνk+2n+1),\matrix{ { = \sum\limits_{n = 0}^\infty {{{{( - c)}^n}{x^{ - \varsigma - \varsigma ' + \gamma {\lambda \over k} + {\nu \over k} + 2n}}} \over {{\Gamma _k}(nk + \nu + {{3k} \over 2})\Gamma (n + {3 \over 2})n{{!2}^{2n + {\nu \over k} + 1}}}}{{\Gamma ({\lambda \over k} + {\nu \over k} + 2n + 1)} \over {\Gamma (\tau ' + {\lambda \over k} + {\nu \over k} + 2n + 1)}}} \hfill \cr { \times {{\Gamma ( - \varsigma - \varsigma ' - \tau + \gamma + {\lambda \over k} + {\nu \over k} + 2n + 1)\Gamma ( - \varsigma ' + \tau ' + {\lambda \over k} + {\nu \over k} + 2n + 1)} \over {\Gamma ( - \varsigma ' - \tau + \gamma + {\lambda \over k} + {\nu \over k} + 2n + 1)\Gamma ( - \varsigma - \varsigma ' + \gamma + {\lambda \over k}{\nu \over k} + 2n + 1)}},} \hfill \cr } Now, using equation (1.5) on above term, then we get =xςς+γ+λk+νk2νk+1kγ12n=0Γk(λ+ν+k+2nk)Γk(kς+kτ+λ+ν+k+2nk)Γk(kτ+λ+ν+k+2nk)Γk(kςkς+kγ+λ+ν+k+2nk)×Γk(kςkςkτ+kγ+λ+ν+k+2nk)Γk(kςkτ+kγ+λ+ν+k+2nk)Γk(nk+ν+3k2)Γk(3k2+nk)n!(cx2k22)n.\matrix{ { = {{{x^{ - \varsigma - \varsigma ' + \gamma + {\lambda \over k} + {\nu \over k}}}} \over {{2^{{\nu \over k} + 1}}{k^{ - \gamma - {1 \over 2}}}}}\sum\limits_{n = 0}^\infty {{{\Gamma _k}(\lambda + \nu + k + 2nk){\Gamma _k}( - k\varsigma ' + k\tau ' + \lambda + \nu + k + 2nk)} \over {{\Gamma _k}(k\tau ' + \lambda + \nu + k + 2nk){\Gamma _k}( - k\varsigma - k\varsigma ' + k\gamma + \lambda + \nu + k + 2nk)}}} \hfill \cr { \times {{{\Gamma _k}( - k\varsigma - k\varsigma ' - k\tau + k\gamma + \lambda + \nu + k + 2nk)} \over {{\Gamma _k}( - k\varsigma ' - k\tau + k\gamma + \lambda + \nu + k + 2nk){\Gamma _k}(nk + \nu + {{3k} \over 2}){\Gamma _k}({{3k} \over 2} + nk)n!}}{{\left( {{{ - c{x^2}k} \over {{2^2}}}} \right)}^n}.} \hfill \cr } Using the definition of (1.2) in the above term, we arrive at the result (2.1).

Next theorem gives the right-hand MSM fractional integration of Sν,ck(.)S_{\nu ,c}^k(.) .

Theorem 2

Let ς, ς′, τ, τ′, γ, ρ ∈ ℂ and k ∈ ℝ+ be such that ℜ(γ) > 0, (γ)>0,(λk)>max{(τ),(ςς+γ),(ςτ+γ)}\Re (\gamma ) > 0,\Re \left( {{\lambda \over k}} \right) > \max \{ \Re (\tau ),\Re ( - \varsigma - \varsigma ' + \gamma ),\Re ( - \varsigma - \tau ' + \gamma )\} . Also let c ∈ ℝ; ν > −1, then for t > 0 (Iς,ς,τ,τ,γ(tλk1Sν,ck(t)))(x)=kγ+12xςς+γ+λk+νk2νk+1×3Ψ5k[(kτλν,2k),(kς+kςkγnu,2k),(λν,2k),(kςkτλν,2k),(kς+kτkγλν,2k)(kς+kς+kτkγλν,2k),(ν+3k2,k),(3k2,k)|cx2k4].\matrix{ {\left( {I_ - ^{\varsigma ,\varsigma ',\tau ,\tau ',\gamma }\left( {{t^{{\lambda \over k} - 1}}S_{\nu ,c}^k(t)} \right)} \right)(x) = {{{k^{\gamma + {1 \over 2}}}{x^{ - \varsigma - \varsigma ' + \gamma + {\lambda \over k} + {\nu \over k}}}} \over {{2^{{\nu \over k} + 1}}}}} \hfill \cr {{ \times _3}\Psi _5^k\left[ {\matrix{ {( - k\tau - \lambda - \nu , - 2k),} & {(k\varsigma + k\varsigma ' - k\gamma - nu, - 2k),} \cr {( - \lambda - \nu , - 2k),} & {(k\varsigma - k\tau - \lambda - \nu , - 2k),} \cr } } \right.} \hfill \cr {\left. {\matrix{ {(k\varsigma + k\tau ' - k\gamma - \lambda - \nu , - 2k)} & {} \cr {(k\varsigma + k\varsigma ' + k\tau ' - k\gamma - \lambda - \nu , - 2k),} & {(\nu + {{3k} \over 2},k),({{3k} \over 2},k)} \cr } \;\;|{{ - c{x^2}k} \over 4}} \right].} \hfill \cr }

Proof

On using (1.16) and taking the right-hand sided MSM fractional integral operator inside the summation, the left hand side of (2.2) becomes =n=0(c)nΓk(nk+ν+3k2)Γ(n+32)n!22n+νk+1(Iς,ς,τ,τ,γ{tλk+νk+2n})(x) = \sum\limits_{n = 0}^\infty {{{{( - c)}^n}} \over {{\Gamma _k}(nk + \nu + {{3k} \over 2})\Gamma (n + {3 \over 2})n{{!2}^{2n + {\nu \over k} + 1}}}}\left( {I_ - ^{\varsigma ,\varsigma ',\tau ,\tau ',\gamma }\{ {t^{{\lambda \over k} + {\nu \over k} + 2n}}\} } \right)(x) On using (1.19), we get =n=0(c)nxςς+γ+λk+νk+2nΓk(nk+ν+3k2)Γ(n+32)n!22n+νk+1Γ(τλkνk2n)Γ(λkνk2n)×Γ(ς+τγλkνk2n)Γ(ς+ςγλkνk2n)Γ(ς+ς+τγλkνk2n)Γ(ςτλkνk2n)=n=0(cx2)nxςς+γ+λk+νkΓk(nk+ν+3k2)n!22n+νk+1Γ(τλkνk2n)Γ(ς+ςγλkνk2n)Γ(n+32)Γ(λkνk2n)Γ(ςτλkνk2n)×Γ(ς+τγλkνk2n)Γ(ς+ς+τγλkνk2n)=xςς+γ+λk+νk2νk+1kγ12n=0(ckx24)n1n!Γk(kτλν2nk)Γk(λν2nk)Γk(kςkτλν2nk)×Γk(kς+kςkγλν2nk)Γk(kς+kτkγλν2nk)Γk(kς+kς+kτkγλν2nk)Γk(nk+ν+3k2)Γk(3k2+nk)\matrix{ { = \sum\limits_{n = 0}^\infty {{{{( - c)}^n}{x^{ - \varsigma - \varsigma ' + \gamma + {\lambda \over k} + {\nu \over k} + 2n}}} \over {{\Gamma _k}(nk + \nu + {{3k} \over 2})\Gamma (n + {3 \over 2})n{{!2}^{2n + {\nu \over k}}} + 1}}{{\Gamma ( - \tau - {\lambda \over k} - {\nu \over k} - 2n)} \over {\Gamma ( - {\lambda \over k} - {\nu \over k} - 2n)}}} \hfill \cr { \times {{\Gamma (\varsigma + \tau ' - \gamma - {\lambda \over k} - {\nu \over k} - 2n)\Gamma (\varsigma + \varsigma ' - \gamma - {\lambda \over k} - {\nu \over k} - 2n)} \over {\Gamma (\varsigma + \varsigma ' + \tau ' - \gamma - {\lambda \over k} - {\nu \over k} - 2n)\Gamma (\varsigma - \tau - {\lambda \over k} - {\nu \over k} - 2n)}}} \hfill \cr { = \sum\limits_{n = 0}^\infty {{{{( - c{x^2})}^n}{x^{ - \varsigma - \varsigma ' + \gamma + {\lambda \over k} + {\nu \over k}}}} \over {{\Gamma _k}(nk + \nu + {{3k} \over 2})n{{!2}^{2n + {\nu \over k} + 1}}}}{{\Gamma ( - \tau - {\lambda \over k} - {\nu \over k} - 2n)\Gamma (\varsigma + \varsigma ' - \gamma - {\lambda \over k} - {\nu \over k} - 2n)} \over {\Gamma (n + {3 \over 2})\Gamma ( - {\lambda \over k} - {\nu \over k} - 2n)\Gamma (\varsigma - \tau - {\lambda \over k} - {\nu \over k} - 2n)}}} \hfill \cr { \times {{\Gamma (\varsigma + \tau ' - \gamma - {\lambda \over k} - {\nu \over k} - 2n)} \over {\Gamma (\varsigma + \varsigma ' + \tau ' - \gamma - {\lambda \over k} - {\nu \over k} - 2n)}}} \hfill \cr { = {{{x^{ - \varsigma - \varsigma ' + \gamma + {\lambda \over k} + {\nu \over k}}}} \over {{2^{{\nu \over k} + 1}}{k^{ - \gamma - {1 \over 2}}}}}\sum\limits_{n = 0}^\infty {{\left( {{{ - ck{x^2}} \over 4}} \right)}^n}{1 \over {n!}}{{{\Gamma _k}( - k\tau - \lambda - \nu - 2nk)} \over {{\Gamma _k}( - \lambda - \nu - 2nk){\Gamma _k}(k\varsigma - k\tau - \lambda - \nu - 2nk)}}} \hfill \cr { \times {{{\Gamma _k}(k\varsigma + k\varsigma ' - k\gamma - \lambda - \nu - 2nk){\Gamma _k}(k\varsigma + k\tau ' - k\gamma - \lambda - \nu - 2nk)} \over {{\Gamma _k}(k\varsigma + k\varsigma ' + k\tau ' - k\gamma - \lambda - \nu - 2nk){\Gamma _k}(nk + \nu + {{3k} \over 2}){\Gamma _k}({{3k} \over 2} + nk)}}} \hfill \cr } and the result follows on making use of (1.5) and definition of generalized k-Wright function.

Theorem 3

Let ς, ς′, τ, τ′, γ, ρ ∈ ℂ and k ∈ ℝ+ be such that ℜ(γ) > 0, (γ)>0,(λk)>max{(τ),(ςς+γ),(ςτ+γ)}\Re (\gamma ) > 0,\Re ({\lambda \over k}) > \max \{ \Re (\tau ),\Re ( - \varsigma - \varsigma ' + \gamma ),\Re ( - \varsigma - \tau ' + \gamma )\} . Also let c ∈ ℝ; ν > −1, then for t > 0 (Iς,ς,τ,τ,γ(tλkSν,ck(t)))(x)=kγ12xςς+γ+νkλk+12νk+1×3Ψ5k[(kτ+λν,2k),(kς+kςkγ+λnuk,2k),(λνk,2k),(kςkτ+λνk,2k),(kς+kτkγ+λνk,2k)(kς+kς+kτkγ+λνk,2k),(ν+3k2,k),(3k2,k)|cx2k4].\matrix{ {\left( {I_ - ^{\varsigma ,\varsigma ',\tau ,\tau ',\gamma }\left( {{t^{{{ - \lambda } \over k}}}S_{\nu ,c}^k(t)} \right)} \right)(x) = {{{k^{\gamma - {1 \over 2}}}{x^{ - \varsigma - \varsigma ' + \gamma + {\nu \over k} - {\lambda \over k} + 1}}} \over {{2^{{\nu \over k} + 1}}}}} \hfill \cr {{ \times _3}\Psi _5^k\left[ {\matrix{ {( - k\tau + \lambda - \nu , - 2k),} & {(k\varsigma + k\varsigma ' - k\gamma + \lambda - nu - k, - 2k),} \cr {( - \lambda - \nu - k, - 2k),} & {(k\varsigma - k\tau + \lambda - \nu - k, - 2k),} \cr } } \right.} \hfill \cr {\left. {\matrix{ {(k\varsigma + k\tau ' - k\gamma + \lambda - \nu - k, - 2k)} & {} \cr {(k\varsigma + k\varsigma ' + k\tau ' - k\gamma + \lambda - \nu - k, - 2k),} & {(\nu + {{3k} \over 2},k),({{3k} \over 2},k)} \cr } \;\;|{{ - c{x^2}k} \over 4}} \right].} \hfill \cr }

Proof

On using (1.16) and taking the right-hand sided MSM fractional integral operator inside the summation, the left hand side of (2.3) becomes =n=0(c)nΓk(nk+ν+3k2)Γ(n+32)n!22n+νk+1(Iς,ς,τ,τ,γ{tνλk+2n+1}) = \sum\limits_{n = 0}^\infty {{{{( - c)}^n}} \over {{\Gamma _k}(nk + \nu + {{3k} \over 2})\Gamma (n + {3 \over 2})n{{!2}^{2n + {\nu \over k} + 1}}}}\left( {I_ - ^{\varsigma ,\varsigma ',\tau ,\tau ',\gamma }\{ {t^{{{\nu - \lambda } \over k} + 2n + 1}}\} } \right) On using (1.19), we obtain =(c)ntςς+γ+νkλk+2n+1Γk(nk+ν+3k2)Γ(n+32)n!22n+νk+1Γ(τ+λνk2n1)Γ(λnuk2n1)×Γ(ς+ςγ+λνk2n1)Γ(ς+τγ+λνk2n1)γ(ςτ+λνk2n1)Γ(ς+ς+τγ+λνk2n1)\matrix{ { = {{{{( - c)}^n}{t^{ - \varsigma - \varsigma ' + \gamma + {\nu \over k} - {\lambda \over k} + 2n + 1}}} \over {{\Gamma _k}(nk + \nu + {{3k} \over 2})\Gamma (n + {3 \over 2})n{{!2}^{2n + {\nu \over k} + 1}}}}{{\Gamma ( - \tau + {{\lambda - \nu } \over k} - 2n - 1)} \over {\Gamma ({{\lambda - nu} \over k} - 2n - 1)}}} \hfill \cr { \times {{\Gamma (\varsigma + \varsigma ' - \gamma + {{\lambda - \nu } \over k} - 2n - 1)\Gamma (\varsigma + \tau ' - \gamma + {{\lambda - \nu } \over k} - 2n - 1)} \over {\gamma (\varsigma - \tau + {{\lambda - \nu } \over k} - 2n - 1)\Gamma (\varsigma + \varsigma ' + \tau ' - \gamma + {{\lambda - \nu } \over k} - 2n - 1)}}} \hfill \cr } Making use of (1.5), we get =xςς+γ+νkλk+1kγ+122νk+1n=0(ckx2)n4nn!Γk(kτ+λνk2nk)Γk(λνk2nk)Γk(kςkτ+λνk2nk)×Γk(kς+kςkγ+λνk2nk)Γk(kς+kτkγ+λνk2nk)Γk(kς+kς+kτkγ+λνk2nk)Γk(nk+ν+3k2)Γk(nk+3k2)\matrix{ { = {{{x^{ - \varsigma - \varsigma ' + \gamma + {\nu \over k} - {\lambda \over k} + 1}}} \over {{k^{ - \gamma + {1 \over 2}}}{2^{{\nu \over k} + 1}}}}\sum\limits_{n = 0}^\infty {{{{( - ck{x^2})}^n}} \over {{4^n}n!}}{{{\Gamma _k}( - k\tau + \lambda - \nu - k - 2nk)} \over {{\Gamma _k}(\lambda - \nu - k - 2nk){\Gamma _k}(k\varsigma - k\tau + \lambda - \nu - k - 2nk)}}} \hfill \cr { \times {{{\Gamma _k}(k\varsigma + k\varsigma ' - k\gamma + \lambda - \nu - k - 2nk){\Gamma _k}(k\varsigma + k\tau ' - k\gamma + \lambda - \nu - k - 2nk)} \over {{\Gamma _k}(k\varsigma + k\varsigma ' + k\tau ' - k\gamma + \lambda - \nu - k - 2nk){\Gamma _k}(nk + \nu + {{3k} \over 2}){\Gamma _k}(nk + {{3k} \over 2})}}} \hfill \cr } This on expressing in terms of k-Wright function pΨqk_p\Psi _q^k using (1.2) leads to the right-hand side of (2.3). This completes the proof of theorem.

The next theorem obtains the left-hand sided MSM fractional differentiation of k-Struve function.

Theorem 4

Let ς, ς′, τ, τ′, γ, ρ ∈ ℂ and k ∈ ℝ+ be such that (λk)>max{0,(ς+τ),(ςςτ+γ)}\Re ({\lambda \over k}) > \max \{ 0,\Re ( - \varsigma + \tau ),\Re ( - \varsigma - \varsigma ' - \tau ' + \gamma )\} . Also let c ∈ ℝ; ν > −1, then for t > 0 (D0+ς,ς,τ,τ,γ(tλk1Sν,ck(t)))(x)=kγ+12xς+ςγ+λk+νk2νk+1×3Ψ5k[(λ+ν+k,2k),(kτ+kς+λ+ν+k,2k),(kτ+λ+ν+k,2k),(kς+kςkγ+λ+ν+k,2k),(kς+kς+kτkγ+λ+ν+k,2k)(kς+kτkγ+λ+ν+k,2k),(ν+3k2,k),(3k2,k)|cx2k4].\matrix{ {\left( {D_{0 + }^{\varsigma ,\varsigma ',\tau ,\tau ',\gamma }\left( {{t^{{\lambda \over k} - 1}}S_{\nu ,c}^k(t)} \right)} \right)(x) = {{{k^{ - \gamma + {1 \over 2}}}{x^{\varsigma + \varsigma ' - \gamma + {\lambda \over k} + {\nu \over k}}}} \over {{2^{{\nu \over k} + 1}}}}} \hfill \cr {{ \times _3}\Psi _5^k\left[ {\matrix{ {(\lambda + \nu + k,2k),} & {( - k\tau + k\varsigma + \lambda + \nu + k,2k),} \cr {( - k\tau + \lambda + \nu + k,2k),(k\varsigma + k\varsigma ' - k\gamma + \lambda + \nu + k,2k),} \cr } } \right.} \hfill \cr {\left. {\matrix{ {(k\varsigma + k\varsigma ' + k\tau - k\gamma + \lambda + \nu + k,2k)} & {} \cr {(k\varsigma + k\tau ' - k\gamma + \lambda + \nu + k,2k),} & {(\nu + {{3k} \over 2},k),({{3k} \over 2},k)} \cr } \;\;|{{ - c{x^2}k} \over 4}} \right].} \hfill \cr }

Proof

On using (1.16) and taking the left-hand sided MSM fractional derivative inside the summation, the left-hand side of (2.4) becomes =n=0(c)nΓk(nk+ν+3k2)Γ(n+32)n!2νk+2n+1(D0+ς,ς,τ,τ,γ(tλk+νk+2n)) = \sum\limits_{n = 0}^\infty {{{{( - c)}^n}} \over {{\Gamma _k}(nk + \nu + {{3k} \over 2})\Gamma (n + {3 \over 2})n{{!2}^{{\nu \over k} + 2n + 1}}}}\left( {D_{0 + }^{\varsigma ,\varsigma ',\tau ,\tau ',\gamma }\left( {{t^{{\lambda \over k} + {\nu \over k} + 2n}}} \right)} \right) Using (1.20) in above term, we obtain =n=0(c)nΓ(λk+νk+2n+1)Γ(τ+ς+λk+νk+2n+1)Γk(nk+ν+3k2)Γ(n+32)n!2νk+2n+1Γ(τ+λk+νk+2n+1)×Γ(ς+ς+τγ+λk+νk+2n+1)Γ(ς+ςγ+λk+νk+2n+1)Γ(ς+τγ+λk+νk+2n+1)xς+ςγ+λk+νk+2n=xς+ςγλk+νk2νk+1n=0(cx2)nn!4nΓk(nk+ν+3k2)Γ(λk+νk+2n+1)Γ(n+32)Γ(τ+λk+νk+2n+1)×Γ(τ+ς+λk+νk+2n+1)Γ(ς+ς+τγ+λk+νk+2n+1)Γ(ς+ςγ+λk+νk+2n+1)Γ(ς+τγ+λk+νk+2n+1)=kγ+12xς+ςγ+λk+νk2νk+1n=0(ckx2)nn!4n×Γk(λ+ν+k+2nk)Γk(kτ+kς+λ+ν+k+2nk)Γk(nk+ν+3k2)Γk(nk+3k2)Γk(kτ+λ+ν+k+2nk)×Γk(kς+kς+kτkγ+λ+ν+k+2nk)Γk(kς+kςkγ+λ+ν+k+2nk)Γk(kς+kτkγ+λ+ν+k+2nk)\matrix{ { = \sum\limits_{n = 0}^\infty {{{{( - c)}^n}\Gamma ({\lambda \over k} + {\nu \over k} + 2n + 1)\Gamma ( - \tau + \varsigma + {\lambda \over k} + {\nu \over k} + 2n + 1)} \over {{\Gamma _k}(nk + \nu + {{3k} \over 2})\Gamma (n + {3 \over 2})n{{!2}^{{\nu \over k} + 2n + 1}}\Gamma ( - \tau + {\lambda \over k} + {\nu \over k} + 2n + 1)}}} \hfill \cr { \times {{\Gamma (\varsigma + \varsigma ' + \tau ' - \gamma + {\lambda \over k} + {\nu \over k} + 2n + 1)} \over {\Gamma (\varsigma + \varsigma ' - \gamma + {\lambda \over k} + {\nu \over k} + 2n + 1)\Gamma (\varsigma + \tau ' - \gamma + {\lambda \over k} + {\nu \over k} + 2n + 1)}}{x^{\varsigma + \varsigma ' - \gamma + {\lambda \over k} + {\nu \over k} + 2n}}} \hfill \cr { = {{{x^{\varsigma + \varsigma ' - \gamma {\lambda \over k} + {\nu \over k}}}} \over {{2^{{\nu \over k} + 1}}}}\sum\limits_{n = 0}^\infty {{{{( - c{x^2})}^n}} \over {n{{!4}^n}{\Gamma _k}(nk + \nu + {{3k} \over 2})}}{{\Gamma ({\lambda \over k} + {\nu \over k} + 2n + 1)} \over {\Gamma (n + {3 \over 2})\Gamma ( - \tau + {\lambda \over k} + {\nu \over k} + 2n + 1)}}} \hfill \cr { \times {{\Gamma ( - \tau + \varsigma + {\lambda \over k} + {\nu \over k} + 2n + 1)\Gamma (\varsigma + \varsigma ' + \tau ' - \gamma + {\lambda \over k} + {\nu \over k} + 2n + 1)} \over {\Gamma (\varsigma + \varsigma ' - \gamma + {\lambda \over k} + {\nu \over k} + 2n + 1)\Gamma (\varsigma + \tau ' - \gamma + {\lambda \over k} + {\nu \over k} + 2n + 1)}}} \hfill \cr { = {{{k^{ - \gamma + {1 \over 2}}}{x^{\varsigma + \varsigma ' - \gamma + {\lambda \over k} + {\nu \over k}}}} \over {{2^{{\nu \over k} + 1}}}}\sum\limits_{n = 0}^\infty {{{{( - ck{x^2})}^n}} \over {n{{!4}^n}}}} \hfill \cr { \times {{{\Gamma _k}(\lambda + \nu + k + 2nk){\Gamma _k}( - k\tau + k\varsigma + \lambda + \nu + k + 2nk)} \over {{\Gamma _k}(nk + \nu + {{3k} \over 2}){\Gamma _k}(nk + {{3k} \over 2}){\Gamma _k}( - k\tau + \lambda + \nu + k + 2nk)}}} \hfill \cr { \times {{{\Gamma _k}(k\varsigma + k\varsigma ' + k\tau ' - k\gamma + \lambda + \nu + k + 2nk)} \over {{\Gamma _k}(k\varsigma + k\varsigma ' - k\gamma + \lambda + \nu + k + 2nk){\Gamma _k}(k\varsigma + k\tau ' - k\gamma + \lambda + \nu + k + 2nk)}}} \hfill \cr } In above term, we use equation (1.5), and the result follows by using (1.2), then we arrive at (2.4).

The next theorem gives the right-hand sided MSM fractional derivative of k-Struve function.

Theorem 5

Let ς, ς′, τ, τ′, γ, ρ ∈ ℂ and k ∈ ℝ+ be such that (λk)>max{(τ),(ς+τγ),(ς+ςγ)+[(γ)]+1}\Re ({\lambda \over k}) > \max \{ \Re ( - \tau '),\Re (\varsigma ' + \tau - \gamma ),\Re (\varsigma + \varsigma ' - \gamma ) + [\Re (\gamma )] + 1\} . Also let c ∈ ℝ; ν > −1, then for t > 0 (Dς,ς,τ,τ,γ(tλk1Sν,ck(t)))(x)=kγ+12xς+ςγ+λk+νk2νk+1×3Ψ5k[(kτλν,2k),(kςkς+kγλν,2k),(λν,2k),(kς+kτλν,2k),(kς+kτ+kγλν,2k)(kςkςkτ+kγλν,2k),(ν+3k2,k),(3k2,k)|cx2k4].\matrix{ {\left( {D_ - ^{\varsigma ,\varsigma ',\tau ,\tau ',\gamma }\left( {{t^{{\lambda \over k} - 1}}S_{\nu ,c}^k(t)} \right)} \right)(x) = {{{k^{ - \gamma + {1 \over 2}}}{x^{\varsigma + \varsigma ' - \gamma + {\lambda \over k} + {\nu \over k}}}} \over {{2^{{\nu \over k} + 1}}}}} \hfill \cr {{ \times _3}\Psi _5^k\left[ {\matrix{ {(k\tau ' - \lambda - \nu , - 2k),} & {( - k\varsigma - k\varsigma ' + k\gamma - \lambda - \nu , - 2k),} \cr {( - \lambda - \nu , - 2k),} & {( - k\varsigma ' + k\tau ' - \lambda - \nu , - 2k),} \cr } } \right.} \hfill \cr {\left. {\matrix{ {( - k\varsigma ' + k\tau + k\gamma - \lambda - \nu , - 2k)} & {} \cr {( - k\varsigma - k\varsigma ' - k\tau + k\gamma - \lambda - \nu , - 2k),} & {(\nu + {{3k} \over 2},k),({{3k} \over 2},k)} \cr } \;\;|{{ - c{x^2}k} \over 4}} \right].} \hfill \cr }

Proof

On using (1.16) and taking the left-hand sided MSM fractional derivative inside the summation, the left-hand side of (2.5) becomes =n=0(c)nΓk(nk+ν+3k2)Γ(n+32)n!2νk+2n+1(Dς,ς,τ,τ,γ(tλk+νk+2n)) = \sum\limits_{n = 0}^\infty {{{{( - c)}^n}} \over {{\Gamma _k}(nk + \nu + {{3k} \over 2})\Gamma (n + {3 \over 2})n{{!2}^{{\nu \over k} + 2n + 1}}}}\left( {D_ - ^{\varsigma ,\varsigma ',\tau ,\tau ',\gamma }\left( {{t^{{\lambda \over k} + {\nu \over k} + 2n}}} \right)} \right) Using (1.21) in above term, we obtain =n=0(c)nΓ(τλkνk2n)Γk(nk+ν+3k2)Γ(n+32)n!2νk+2n+1Γ(λkνk2n)×Γ(ςς+γλkνk2n)Γ(ςτ+γλkνk2n)Γ(ςςτ+γλkνk2n)Γ(ς+τλkνk2n)xς+ςγ+λk+νk+2n=xς+ςγλk+νk2νk+1n=0(cx2)nn!4nΓk(nk+ν+3k2)Γ(τλkνk2n)Γ(λkνk2n)×Γ(ςς+γλkνk2n)Γ(ςτ+γλkνk2n)Γ(ς+τλkνk2n)Γ(ςςτ+γλkνk2n)=kγ+12xς+ςγ+λk+νk2νk+1n=0(ckx2)nn!4n×Γk(kτλν2nk)Γk(kςkς+kγλν2nk)Γk(λν2nk)Γk(kς+kτλν2nk)×Γk(kςkτ+kγλν2nk)Γk(kςkςkτ+kγλν2nk)tΓk(ν+3k2+nk)Γk(3k2+nk)\matrix{ { = \sum\limits_{n = 0}^\infty {{{{( - c)}^n}\Gamma (\tau ' - {\lambda \over k} - {\nu \over k} - 2n)} \over {{\Gamma _k}(nk + \nu + {{3k} \over 2})\Gamma (n + {3 \over 2})n{{!2}^{{\nu \over k} + 2n + 1}}\Gamma ( - {\lambda \over k} - {\nu \over k} - 2n)}}} \hfill \cr { \times {{\Gamma ( - \varsigma - \varsigma ' + \gamma - {\lambda \over k} - {\nu \over k} - 2n)\Gamma ( - \varsigma ' - \tau + \gamma - {\lambda \over k} - {\nu \over k} - 2n)} \over {\Gamma ( - \varsigma - \varsigma ' - \tau + \gamma - {\lambda \over k} - {\nu \over k} - 2n)\Gamma ( - \varsigma ' + \tau ' - {\lambda \over k} - {\nu \over k} - 2n)}}{x^{\varsigma + \varsigma ' - \gamma + {\lambda \over k} + {\nu \over k} + 2n}}} \hfill \cr { = {{{x^{\varsigma + \varsigma ' - \gamma {\lambda \over k} + {\nu \over k}}}} \over {{2^{{\nu \over k} + 1}}}}\sum\limits_{n = 0}^\infty {{{{( - c{x^2})}^n}} \over {n{{!4}^n}{\Gamma _k}(nk + \nu + {{3k} \over 2})}}{{\Gamma (\tau ' - {\lambda \over k} - {\nu \over k} - 2n)} \over {\Gamma ( - {\lambda \over k} - {\nu \over k} - 2n)}}} \hfill \cr { \times {{\Gamma ( - \varsigma - \varsigma ' + \gamma - {\lambda \over k} - {\nu \over k} - 2n)\Gamma ( - \varsigma ' - \tau + \gamma - {\lambda \over k} - {\nu \over k} - 2n)} \over {\Gamma ( - \varsigma ' + \tau ' - {\lambda \over k} - {\nu \over k} - 2n)\Gamma ( - \varsigma - \varsigma ' - \tau + \gamma - {\lambda \over k} - {\nu \over k} - 2n)}}} \hfill \cr { = {{{k^{ - \gamma + {1 \over 2}}}{x^{\varsigma + \varsigma ' - \gamma + {\lambda \over k} + {\nu \over k}}}} \over {{2^{{\nu \over k} + 1}}}}\sum\limits_{n = 0}^\infty {{{{( - ck{x^2})}^n}} \over {n{{!4}^n}}}} \hfill \cr { \times {{{\Gamma _k}(k\tau ' - \lambda - \nu - 2nk){\Gamma _k}( - k\varsigma - k\varsigma ' + k\gamma - \lambda - \nu - 2nk)} \over {{\Gamma _k}( - \lambda - \nu - 2nk){\Gamma _k}( - k\varsigma ' + k\tau ' - \lambda - \nu - 2nk)}}} \hfill \cr { \times {{{\Gamma _k}( - k\varsigma ' - k\tau + k\gamma - \lambda - \nu - 2nk)} \over {{\Gamma _k}( - k\varsigma - k\varsigma ' - k\tau + k\gamma - \lambda - \nu - 2nk)t{\Gamma _k}(\nu + {{3k} \over 2} + nk){\Gamma _k}({{3k} \over 2} + nk)}}} \hfill \cr } Thus, in accordance with (1.2), we get the required result (2.5).

Theorem 6

Let ς, ς′, τ, τ′, γ, ρ ∈ ℂ and k ∈ ℝ+ be such that (λk)>max{(τ),(ς+τγ),(ς+ςγ)+[(γ)]+1}\Re ({\lambda \over k}) > \max \{ \Re ( - \tau '),\Re (\varsigma ' + \tau - \gamma ),\Re (\varsigma + \varsigma ' - \gamma ) + [\Re (\gamma )] + 1\} . Also let c ∈ ℝ; ν > −1, then for t > 0 (Dς,ς,τ,τ,γ(tλkSν,ck(t)))(x)=kγ+12xς+ςγ+λk+νk+12νk+1×3Ψ5k[(kτ+λνk,2k),(kςkς+kγλνk,2k),(λνk,2k),(kς+kτ+λνk,2k),(kςkτ+kγ+λνk,2k)(kςkςkτ+kγ+λνk,2k),(ν+3k2,k),(3k2,k)|cx2k4].\matrix{ {\left( {D_ - ^{\varsigma ,\varsigma ',\tau ,\tau ',\gamma }\left( {{t^{ - {\lambda \over k}}}S_{\nu ,c}^k(t)} \right)} \right)(x) = {{{k^{ - \gamma + {1 \over 2}}}{x^{\varsigma + \varsigma ' - \gamma + {\lambda \over k} + {\nu \over k} + 1}}} \over {{2^{{\nu \over k} + 1}}}}} \hfill \cr {{ \times _3}\Psi _5^k\left[ {\matrix{ {(k\tau ' + \lambda - \nu - k, - 2k),} & {( - k\varsigma - k\varsigma ' + k\gamma - \lambda - \nu - k, - 2k),} \cr {( - \lambda - \nu - k, - 2k),} & {( - k\varsigma ' + k\tau ' + \lambda - \nu - k, - 2k),} \cr } } \right.} \hfill \cr {\left. {\matrix{ {( - k\varsigma ' - k\tau + k\gamma + \lambda - \nu - k, - 2k)} & {} \cr {( - k\varsigma - k\varsigma ' - k\tau + k\gamma + \lambda - \nu - k, - 2k),} & {(\nu + {{3k} \over 2},k),({{3k} \over 2},k)} \cr } \;\;|{{ - c{x^2}k} \over 4}} \right].} \hfill \cr }

Proof

On using (1.16) and taking the right-hand sided MSM fractional derivative inside the summation, the left-hand side of (2.6) becomes =n=0(c)nΓk(nk+ν+3k2)Γ(n+32)n!2νk+2n+1(Dς,ς,τ,τ,γ(tνkλk+2n+1)) = \sum\limits_{n = 0}^\infty {{{{( - c)}^n}} \over {{\Gamma _k}(nk + \nu + {{3k} \over 2})\Gamma (n + {3 \over 2})n{{!2}^{{\nu \over k} + 2n + 1}}}}\left( {D_ - ^{\varsigma ,\varsigma ',\tau ,\tau ',\gamma }\left( {{t^{{\nu \over k} - {\lambda \over k} + 2n + 1}}} \right)} \right) Using (1.21), we have =n=0(c)nΓk(nk+ν+3k2)Γ(n+32)n!2νk+2n+1Γ(τ+λνk2n1)Γ(λνk2n1)×Γ(ςς+γ+λνk2n1)Γ(ςτ+γ+λνk2n1)Γ(ς+τ+λνk2n1)Γ(ςςτ+γ+λνk2n1)xς+ςγ+νkλk+2n+1\matrix{ { = \sum\limits_{n = 0}^\infty {{{{( - c)}^n}} \over {{\Gamma _k}(nk + \nu + {{3k} \over 2})\Gamma (n + {3 \over 2})n{{!2}^{{\nu \over k} + 2n + 1}}}}{{\Gamma (\tau ' + {{\lambda - \nu } \over k} - 2n - 1)} \over {\Gamma ({{\lambda - \nu } \over k} - 2n - 1)}}} \hfill \cr { \times {{\Gamma ( - \varsigma - \varsigma ' + \gamma + {{\lambda - \nu } \over k} - 2n - 1)\Gamma ( - \varsigma ' - \tau + \gamma + {{\lambda - \nu } \over k} - 2n - 1)} \over {\Gamma ( - \varsigma ' + \tau ' + {{\lambda - \nu } \over k} - 2n - 1)\Gamma ( - \varsigma - \varsigma ' - \tau + \gamma + {{\lambda - \nu } \over k} - 2n - 1)}}{x^{\varsigma + \varsigma ' - \gamma + {\nu \over k} - {\lambda \over k} + 2n + 1}}} \hfill \cr } Making use of (1.5), we obtain =tς+ςγ+νkλk+12νk+1n=0(ckt2)nn!4nkγ12×Γk(kτ+λνk2nk)Γk(λνk2nk)Γk(kς+kτ+λνk2nk)×Γk(kςkς+kγ+λνk2nk)Γk(kςkτ+kγ+λνk2nk)Γk(kςkςkτ+kγ+λνk2nk)Γk(nk+ν+3k2)Γk(nk+3k2)\matrix{ { = {{{t^{\varsigma + \varsigma ' - \gamma + {\nu \over k} - {\lambda \over k} + 1}}} \over {{2^{{\nu \over k} + 1}}}}\sum\limits_{n = 0}^\infty {{{{( - ck{t^2})}^n}} \over {n{{!4}^n}{k^{\gamma - {1 \over 2}}}}}} \hfill \cr { \times {{{\Gamma _k}(k\tau ' + \lambda - \nu - k - 2nk)} \over {{\Gamma _k}(\lambda - \nu - k - 2nk){\Gamma _k}( - k\varsigma ' + k\tau ' + \lambda - \nu - k - 2nk)}}} \hfill \cr { \times {{{\Gamma _k}( - k\varsigma - k\varsigma ' + k\gamma + \lambda - \nu - k - 2nk){\Gamma _k}( - k\varsigma ' - k\tau + k\gamma + \lambda - \nu - k - 2nk)} \over {{\Gamma _k}( - k\varsigma - k\varsigma ' - k\tau + k\gamma + \lambda - \nu - k - 2nk){\Gamma _k}(nk + \nu + {{3k} \over 2}){\Gamma _k}(nk + {{3k} \over 2})}}} \hfill \cr } This on expressing in terms of k-Wright function pΨqk_p\Psi _q^k using (1.2) leads to the right-hand side of (2.6). This completes the proof.

Concluding Remark

MSM fractional calculus operators have more advantage due to the generalize of Riemann-Liouville, Weyl, Erdélyi-Kober, and Saigo's fractional calculus operators; therefore, many authors are called as general operator. Now we are going to conclude of this paper by emphasizing that our leading results (Theorems 1 – 6) can be derived as the specific cases involving familiar fractional calculus operators as above said. On other hand, the k Struve function defined in (1.16) possesses the lead that a number of special functions occur to be the particular cases. Some of special cases respect to the integrals relating with k Struve function have been discovered in the earlier research works by various authors with not the same arguments.

eISSN:
2444-8656
Język:
Angielski
Częstotliwość wydawania:
Volume Open
Dziedziny czasopisma:
Life Sciences, other, Mathematics, Applied Mathematics, General Mathematics, Physics