Accesso libero

The Marichev-Saigo-Maeda Fractional Calculus Operators Pertaining to the Generalized K-Struve Function

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Introduction and Preliminaries

The Wright function play an important role in the partial differential equation of fractional order which is familiar and extensively treated in papers by a number of authors including Gorenflo et al. [6].

For ςi, τj ∈ ℝ\{0} and ai,bj ∈ ℂ,i = (1̅, p); j = (1̅,q) the generalized form of Wright function is defined by Wright ([13,14,15,16,17]) as following: pΨq(z)=pΨq[(ai,ςi)1,p(bj,τj)1,q|z]=n=0i=1pΓ(ai+nςi)j=1qΓ(bj+nτj)znn!,z,_p{\Psi _q}(z{) = _p}{\Psi _q}\left[ {\matrix{ {{{({a_i},{\varsigma _i})}_{1,p}}} \cr {{{({b_j},{\tau _j})}_{1,q}}} \cr } |z} \right] = \sum\limits_{n = 0}^\infty {{\prod\nolimits_{i = 1}^p \Gamma ({a_i} + n{\varsigma _i})} \over {\prod\nolimits_{j = 1}^q \Gamma ({b_j} + n{\tau _j})}}{{{z^n}} \over {n!}},z \in \mathbb{C}, where Γ (z) is the well-known Euler gamma function [4].The condition for existence of (1.1) with its depiction in terms of Mellin-Barnes integral and the H-function were obtained by Kilbas et al. [10].

The generalized form of the above Wright function (1.1) was given by Gehlot and Prajapati [5], named as generalized K-Wright function which is defined as pΨqk(z)=pΨqk[(ai,ςi)1,p(bj,τj)1,q|z]=n=0i=1pΓk(ai+nςi)j=1qΓk(bj+nτj)znn!,z,_p\Psi _q^k(z{) = _p}\Psi _q^k\left[ {\matrix{ {{{({a_i},{\varsigma _i})}_{1,p}}} \cr {{{({b_j},{\tau _j})}_{1,q}}} \cr } |z} \right] = \sum\limits_{n = 0}^\infty {{\prod\nolimits_{i = 1}^p {\Gamma _k}({a_i} + n{\varsigma _i})} \over {\prod\nolimits_{j = 1}^q {\Gamma _k}({b_j} + n{\tau _j})}}{{{z^n}} \over {n!}},z \in \mathbb{C}, where k ∈ ℝ+ and (ai + i), (bj + j) ∈ ℂ\k for all n ∈ ℕ0. The generalized k-gamma function [3] is defined as Γk(z)=0etkktz1dt;((z)>0;k+){\Gamma _k}(z) = \int_0^\infty {e^{ - {{{t^k}} \over k}}}{t^{z - 1}}dt;\;\;(\Re (z) > 0;\;k \in {\mathbb{R}^ + }) and Γk(z)=limnn!kn(nk)zk1(z)n,k,k+,z\k{\Gamma _k}(z) = \mathop {\lim }\limits_{n \to \infty } {{n!{k^n}{{(nk)}^{{z \over k} - 1}}} \over {{{(z)}_{n,k}}}},\;\;k \in {\mathbb{R}^ + },\;z \in \backslash k{\mathbb{Z}^ - } Also Γk(z)=kzk1Γ(zk),{\Gamma _k}(z) = {k^{{z \over k} - 1}}\Gamma \left( {{z \over k}} \right), where (z)n,k is the k-Pochammer symbol introduced by Diaz and Pariguan [3] defined for complex z ∈ ℂ and k ∈ ℝ as (z)n,k={1ifn=0,z(z+k)(z+2k)(z+(n1)k)ifn.}{(z)_{n,k}} = \left\{ {\matrix{ 1 & {if\;\;n = 0,} \cr {z(z + k)(z + 2k) \ldots (z + (n - 1)k)} & {if\;\;n \in \mathbb{N}.} \cr } } \right\} On taking k = 1, then the generalized K-Wright function (1.2) diminishes to the generalized Wright function (1.1).

Saigo fractional calculus operators

Saigo [18] defined the fractional integral and differential operators with the Gauss hyergeometric function as kernel, which are remarkable generalizations of the Riemann-Liouville (R-L) and Erdélyi-Kober fractional calculus operators (see; [11]).

For ς, τ, γ ∈ ℂ and x ∈ ℝ+ with ℜ(ς) > 0, the left-hand and the right-hand sided generalized fractional integral operators connected with Gauss hypergeometric function are defined as below: (I0+ς,τ,γf)(x)=xςτΓ(ς)0x(xt)ς12F1(ς+τ,γ;ς;1tx)f(t)dt(I_{0 + }^{\varsigma ,\tau ,\gamma }f)(x) = {{{x^{ - \varsigma - \tau }}} \over {\Gamma (\varsigma )}}\int_0^x {(x - t)^{\varsigma - 1}}_2{F_1}(\varsigma + \tau , - \gamma ;\varsigma ;1 - {t \over x})f(t)dt and (Iς,τ,γf)(x)=1Γ(ς)x(tx)ς1tς+τ2F1(ς+τ,γ;ς;1xt)f(t)dt(I_ - ^{\varsigma ,\tau ,\gamma }f)(x) = {1 \over {\Gamma (\varsigma )}}\int_x^\infty {{{{{(t - x)}^{\varsigma - 1}}} \over {{t^{\varsigma + \tau }}}}{_2}}{F_1}(\varsigma + \tau , - \gamma ;\varsigma ;1 - {x \over t})f(t)dt respectively. Here, 2F1(ς, τ; γ; z) is the Gauss hypergeometric function [11] defined for z ∈ ℂ, |z| < 1 and ς, τ ∈ ℂ, γ\0\gamma \in \mathbb{C} \backslash \mathbb{Z}_0^ - by 2F1(ς,τ;γ;z)=n=0(ς)n(τ)n(γ)nznn!,_2{F_1}(\varsigma ,\tau ;\gamma ;z) = \sum\limits_{n = 0}^\infty {{{{(\varsigma )}_n}{{(\tau )}_n}} \over {{{(\gamma )}_n}}}{{{z^n}} \over {n!}}, where (z)n = (z)n,1. The corresponding fractional differential operators are (D0+ς,τ,γf)(x)=(ddx)l(I0+ς+l,τl,ς+γlf)(x)(D_{0 + }^{\varsigma ,\tau ,\gamma }f)(x) = {\left( {{d \over {dx}}} \right)^l}(I_{0 + }^{ - \varsigma + l, - \tau - l,\varsigma + \gamma - l}f)(x) and (Dς,τ,γf)(x)=(ddx)l(Iς+l,τl,ς+γf)(x)(D_ - ^{\varsigma ,\tau ,\gamma }f)(x) = {\left( { - {d \over {dx}}} \right)^l}(I_ - ^{ - \varsigma + l, - \tau - l,\varsigma + \gamma }f)(x) where l = [ℜ (ς)] + 1 and [ℜ (ς)] is the integer part of ℜ(ς). Substituting τ = −ς and τ = 0 in equation (1.7) – (1.10), we get the corresponding R-L and Erdélyi-Kober fractional operators, respectively.

Marichev-Saigo-Maeda fractional operators

Marichev [13] was introduced and studied fractional calculus operators which are the generalization of the Saigo operators, later generalized by Saigo and Maeda [19]. For ς, ς′, τ, τ′, γ ∈ ℂ and x ∈ ℝ+ with ℜ(γ) > 0, the left-hand and right-hand sided MSM fractional integral and derivative operators associated with third Appell function F3 are defined as (I0+ς,ς,τ,τ,γf)(x)=xςΓ(γ)0x(xt)γ1tςF3(ς,ς,τ,τ,γ,1tx,1xt)f(t)dt(I_{0 + }^{\varsigma ,\varsigma ',\tau ,\tau ',\gamma }f)(x) = {{{x^{ - \varsigma }}} \over {\Gamma (\gamma )}}\int_0^x {{{{(x - t)}^{\gamma - 1}}} \over {{t^{\varsigma '}}}}{F_3}(\varsigma ,\varsigma ',\tau ,\tau ,\gamma ,1 - {t \over x},1 - {x \over t})f(t)dt and (Iς,ς,τ,τ,γf)(x)=xςΓ(γ)x(tx)γ1tςF3(ς,ς,τ,τ,γ,1xt,1tx)f(t)dt(I_ - ^{\varsigma ,\varsigma ',\tau ,\tau ',\gamma }f)(x) = {{{x^{ - \varsigma '}}} \over {\Gamma (\gamma )}}\int_x^\infty {{{{(t - x)}^{\gamma - 1}}} \over {{t^\varsigma }}}{F_3}(\varsigma ,\varsigma ',\tau ,\tau ,\gamma ,1 - {x \over t},1 - {t \over x})f(t)dt(D0+ς,ς,τ,τ,γf)(x)=(ddx)m(I0+ς,ς,τ+m,τ,γ+mf)(x)(D_{0 + }^{\varsigma ,\varsigma ',\tau ,\tau ',\gamma }f)(x) = {\left( {{d \over {dx}}} \right)^m}(I_{0 + }^{ - \varsigma ', - \varsigma , - \tau ' + m, - \tau , - \gamma + m}f)(x) and (Dς,ς,τ,τ,γf)(x)=(ddx)m(Iς,ς,τ,τ+m,γ+mf)(x)(D_ - ^{\varsigma ,\varsigma ',\tau ,\tau ',\gamma }f)(x) = {\left( { - {d \over {dx}}} \right)^m}(I_ - ^{ - \varsigma ', - \varsigma , - \tau ', - \tau + m, - \gamma + m}f)(x) respectively, where m = [ℜ(γ)] + 1 and the third Appell function [17], is defined by F3(ς,ς,τ,τ,γ;x,y)=m,n,=0(ς)m(ς)n(τ)m(τ)n(γ)m+nxmynm!n!,max{|x|,|y|}<1.{F_3}(\varsigma ,\varsigma ',\tau ,\tau ',\gamma ;x,y) = \sum\limits_{m,n, = 0}^\infty {{{{(\varsigma )}_m}{{(\varsigma ')}_n}{{(\tau )}_m}{{(\tau ')}_n}} \over {{{(\gamma )}_{m + n}}}}{{{x^m}{y^n}} \over {m!n!}},\;\;\;\max \{ |x|,|y|\} < 1.

Generalized k-Struve function

The generalized k-Struve function was defined by Nisar et al. [14] as Sν,ck(t)=n=0(c)nΓk(nk+ν+3k2)Γ(n+32)n!(t2)2n+νk+1(k+;c;ν>1)\matrix{ {S_{\nu ,c}^k(t) = \sum\limits_{n = 0}^\infty {{{{( - c)}^n}} \over {{\Gamma _k}(nk + \nu + {{3k} \over 2})\Gamma (n + {3 \over 2})n!}}{{\left( {{t \over 2}} \right)}^{2n + {\nu \over k} + 1}}} \cr {(k \in {\mathbb{R}^ + };c \in \mathbb{R};\nu > - 1)} \cr } taking k→ 1 and c = 1; (1.15) reduces to yield the well-known Struve function of order ν is defined by [1] as Hν(t)=n=0(1)nΓ(n+ν+32)Γ(n+32)n!(t2)2n+ν+1{H_\nu }(t) = \sum\limits_{n = 0}^\infty {{{{( - 1)}^n}} \over {\Gamma (n + \nu + {3 \over 2})\Gamma (n + {3 \over 2})n!}}{\left( {{t \over 2}} \right)^{2n + \nu + 1}} For more details about Struve functions, their generalizations and properties, the esteemed reader is invited to consider references [2, 7, 8, 14, 15, 20,21,22].

The following MSM integral operators are required here [19, p. 394] to obtain the MSM fractional integration of generalized k-Struve function.

Lemma 1

Let ς, ς′, τ, τ′, γ, ρ ∈ ℂ such that ℜ(ς) > 0

ℜ(ρ) > 0 max{0,ℜ(ς′ − τ′),ℜ(ς + ς′ + τγ)}, then (I0+ς,ς,τ,τ,γtρ1)(x)=Γ(ρ)Γ(ς+τ+ρ)Γ(ςςτ+γ+ρ)Γ(τ+ρ)Γ(ςς+γ+ρ)Γ(ςτ+γ+ρ)xςς+γ+ρ1(I_{0 + }^{\varsigma ,\varsigma ',\tau ,\tau ',\gamma }{t^{\rho - 1}})(x) = {{\Gamma (\rho )\Gamma ( - \varsigma ' + \tau ' + \rho )\Gamma ( - \varsigma - \varsigma ' - \tau + \gamma + \rho )} \over {\Gamma (\tau ' + \rho )\Gamma ( - \varsigma - \varsigma ' + \gamma + \rho )\Gamma ( - \varsigma ' - \tau + \gamma + \rho )}}{x^{ - \varsigma - \varsigma ' + \gamma + \rho - 1}}

If ℜ(ρ) > max{ℜ(τ),ℜ(−ςς′ + γ),ℜ(−ςτ′ + γ}, then (Iς,ς,τ,τ,γtρ)(x)=Γ(τ+ρ)Γ(ς+ςγ+ρ)Γ(ς+τγ+ρ)Γ(ρ)Γ(ςτ+ρ)Γ(ς+ς+τγ+ρ)xςς+γρ(I_ - ^{\varsigma ,\varsigma ',\tau ,\tau ',\gamma }{t^{ - \rho }})(x) = {{\Gamma ( - \tau + \rho )\Gamma (\varsigma + \varsigma ' - \gamma + \rho )\Gamma (\varsigma + \tau ' - \gamma + \rho )} \over {\Gamma (\rho )\Gamma (\varsigma - \tau + \rho )\Gamma (\varsigma + \varsigma ' + \tau ' - \gamma + \rho )}}{x^{ - \varsigma - \varsigma ' + \gamma - \rho }}

Further, to obtain the MSM fractional differentiation of the generalized k-Struve function, following results will be used from [9] as below:

Lemma 2

Let ς, ς′, τ, τ′, γ, ρ ∈ ℂ, such that ℜ(ς) > 0;

If ℜ(ρ) > max{0,ℜ(−ς + τ),ℜ(−ςς′ − τ′ + γ)} (D0+ς,ς,τ,τ,γtρ1)(x)=Γ(ρ)Γ(τ+ς+ρ)Γ(ς+ς+τγ+ρ)Γ(τ+ρ)Γ(ς+ςγ+ρ)Γ(ς+τγ+ρ)xς+ςγ+ρ1(D_{0 + }^{\varsigma ,\varsigma ',\tau ,\tau ',\gamma }{t^{\rho - 1}})(x) = {{\Gamma (\rho )\Gamma ( - \tau + \varsigma + \rho )\Gamma (\varsigma + \varsigma ' + \tau ' - \gamma + \rho )} \over {\Gamma ( - \tau + \rho )\Gamma (\varsigma + \varsigma ' - \gamma + \rho )\Gamma (\varsigma + \tau ' - \gamma + \rho )}}{x^{\varsigma + \varsigma ' - \gamma + \rho - 1}}

If ℜ(ρ) > max{ℜ(−τ′),ℜ(ς′ + τγ),ℜ(ς + ς′ − γ) + [ℜ(γ)] + 1}, then (Dς,ς,τ,τ,γtρ)(x)=Γ(τ+ρ)Γ(ςς+γ+ρ)Γ(ςτ+γ+ρ)Γ(ρ)Γ(ς+τ+ρ)Γ(ςςτ+γ+ρ)xς+ςγρ(D_ - ^{\varsigma ,\varsigma ',\tau ,\tau ',\gamma }{t^{ - \rho }})(x) = {{\Gamma (\tau ' + \rho )\Gamma ( - \varsigma - \varsigma ' + \gamma + \rho )\Gamma ( - \varsigma ' - \tau + \gamma + \rho )} \over {\Gamma (\rho )\Gamma ( - \varsigma ' + \tau ' + \rho )\Gamma ( - \varsigma - \varsigma ' - \tau + \gamma + \rho )}}{x^{\varsigma + \varsigma ' - \gamma - \rho }}

Fractional Calculus Approach

In this section, the following six theorems for k-Struve function concerning to MSM fractional integral and differential operators are established here as main results.

Theorem 1

Let ς, ς′, τ, tau′, γ, ρ ∈ ℂ and k ∈ ℝ+ be such that (γ)>0,(λk)>max{0,(ςτ),(ς+ς+τγ)}\Re (\gamma ) > 0,\Re \left( {{\lambda \over k}} \right) > \max \{ 0,\Re (\varsigma ' - \tau '),\Re (\varsigma + \varsigma ' + \tau - \gamma )\} . Also let c ∈ ℝ; ν > −1, then for t > 0 (I0+ς,ς,τ,τ,γ(tλk1Sν,ck(t)))(x)=kγ+12xςς+γ+λk+νk2νk+1×3Ψ5k[(λ+ν+k,2k),(kς+kτ+λ+ν+k,2k),(kτ+λ+ν+k,2k),(kςkς+kγ+λ+ν+k,2k),(kςkςkτ+kγ+λ+ν+k,2k)(kςkτ+kγ+λ+ν+k,2k),(ν+3k2,k),(3k2,k)|cx2k4].\matrix{ {\left( {I_{0 + }^{\varsigma ,\varsigma ',\tau ,\tau ',\gamma }\left( {{t^{{\lambda \over k} - 1}}S_{\nu ,c}^k(t)} \right)} \right)(x) = {{{k^{\gamma + {1 \over 2}}}{x^{ - \varsigma - \varsigma ' + \gamma + {\lambda \over k} + {\nu \over k}}}} \over {{2^{{\nu \over k} + 1}}}}} \hfill \cr {{ \times _3}\Psi _5^k\left[ {\matrix{ {(\lambda + \nu + k,2k),} & {( - k\varsigma ' + k\tau ' + \lambda + \nu + k,2k),} \cr {(k\tau ' + \lambda + \nu + k,2k),} & {( - k\varsigma - k\varsigma ' + k\gamma + \lambda + \nu + k,2k),} \cr } } \right.} \hfill \cr {\left. {\matrix{ {( - k\varsigma - k\varsigma ' - k\tau + k\gamma + \lambda + \nu + k,2k)} & {} \cr {( - k\varsigma ' - k\tau + k\gamma + \lambda + \nu + k,2k),} & {(\nu + {{3k} \over 2},k),({{3k} \over 2},k)}\cr } \;\;|{{ - c{x^2}k} \over 4}} \right].} \hfill \cr }

Proof

On using (1.16) and taking the left-hand sided MSM fractional integral operator inside the summation, the left-hand side of (2.1) becomes =n=0(c)nΓk(nk+ν+3k2)Γ(n+32)n!22n+νk+1(I0+ς,ς,τ,τ,γ{tλk+νk+2n})(x), = \sum\limits_{n = 0}^\infty {{{{( - c)}^n}} \over {{\Gamma _k}(nk + \nu + {{3k} \over 2})\Gamma (n + {3 \over 2})n{{!2}^{2n + {\nu \over k} + 1}}}}\left( {I_{0 + }^{\varsigma ,\varsigma ',\tau ,\tau ',\gamma }\{ {t^{{\lambda \over k} + {\nu \over k} + 2n}}\} } \right)(x), Making use of (1.18), we obtain =n=0(c)nxςς+γλk+νk+2nΓk(nk+ν+3k2)Γ(n+32)n!22n+νk+1Γ(λk+νk+2n+1)Γ(τ+λk+νk+2n+1)×Γ(ςςτ+γ+λk+νk+2n+1)Γ(ς+τ+λk+νk+2n+1)Γ(ςτ+γ+λk+νk+2n+1)Γ(ςς+γ+λkνk+2n+1),\matrix{ { = \sum\limits_{n = 0}^\infty {{{{( - c)}^n}{x^{ - \varsigma - \varsigma ' + \gamma {\lambda \over k} + {\nu \over k} + 2n}}} \over {{\Gamma _k}(nk + \nu + {{3k} \over 2})\Gamma (n + {3 \over 2})n{{!2}^{2n + {\nu \over k} + 1}}}}{{\Gamma ({\lambda \over k} + {\nu \over k} + 2n + 1)} \over {\Gamma (\tau ' + {\lambda \over k} + {\nu \over k} + 2n + 1)}}} \hfill \cr { \times {{\Gamma ( - \varsigma - \varsigma ' - \tau + \gamma + {\lambda \over k} + {\nu \over k} + 2n + 1)\Gamma ( - \varsigma ' + \tau ' + {\lambda \over k} + {\nu \over k} + 2n + 1)} \over {\Gamma ( - \varsigma ' - \tau + \gamma + {\lambda \over k} + {\nu \over k} + 2n + 1)\Gamma ( - \varsigma - \varsigma ' + \gamma + {\lambda \over k}{\nu \over k} + 2n + 1)}},} \hfill \cr } Now, using equation (1.5) on above term, then we get =xςς+γ+λk+νk2νk+1kγ12n=0Γk(λ+ν+k+2nk)Γk(kς+kτ+λ+ν+k+2nk)Γk(kτ+λ+ν+k+2nk)Γk(kςkς+kγ+λ+ν+k+2nk)×Γk(kςkςkτ+kγ+λ+ν+k+2nk)Γk(kςkτ+kγ+λ+ν+k+2nk)Γk(nk+ν+3k2)Γk(3k2+nk)n!(cx2k22)n.\matrix{ { = {{{x^{ - \varsigma - \varsigma ' + \gamma + {\lambda \over k} + {\nu \over k}}}} \over {{2^{{\nu \over k} + 1}}{k^{ - \gamma - {1 \over 2}}}}}\sum\limits_{n = 0}^\infty {{{\Gamma _k}(\lambda + \nu + k + 2nk){\Gamma _k}( - k\varsigma ' + k\tau ' + \lambda + \nu + k + 2nk)} \over {{\Gamma _k}(k\tau ' + \lambda + \nu + k + 2nk){\Gamma _k}( - k\varsigma - k\varsigma ' + k\gamma + \lambda + \nu + k + 2nk)}}} \hfill \cr { \times {{{\Gamma _k}( - k\varsigma - k\varsigma ' - k\tau + k\gamma + \lambda + \nu + k + 2nk)} \over {{\Gamma _k}( - k\varsigma ' - k\tau + k\gamma + \lambda + \nu + k + 2nk){\Gamma _k}(nk + \nu + {{3k} \over 2}){\Gamma _k}({{3k} \over 2} + nk)n!}}{{\left( {{{ - c{x^2}k} \over {{2^2}}}} \right)}^n}.} \hfill \cr } Using the definition of (1.2) in the above term, we arrive at the result (2.1).

Next theorem gives the right-hand MSM fractional integration of Sν,ck(.)S_{\nu ,c}^k(.) .

Theorem 2

Let ς, ς′, τ, τ′, γ, ρ ∈ ℂ and k ∈ ℝ+ be such that ℜ(γ) > 0, (γ)>0,(λk)>max{(τ),(ςς+γ),(ςτ+γ)}\Re (\gamma ) > 0,\Re \left( {{\lambda \over k}} \right) > \max \{ \Re (\tau ),\Re ( - \varsigma - \varsigma ' + \gamma ),\Re ( - \varsigma - \tau ' + \gamma )\} . Also let c ∈ ℝ; ν > −1, then for t > 0 (Iς,ς,τ,τ,γ(tλk1Sν,ck(t)))(x)=kγ+12xςς+γ+λk+νk2νk+1×3Ψ5k[(kτλν,2k),(kς+kςkγnu,2k),(λν,2k),(kςkτλν,2k),(kς+kτkγλν,2k)(kς+kς+kτkγλν,2k),(ν+3k2,k),(3k2,k)|cx2k4].\matrix{ {\left( {I_ - ^{\varsigma ,\varsigma ',\tau ,\tau ',\gamma }\left( {{t^{{\lambda \over k} - 1}}S_{\nu ,c}^k(t)} \right)} \right)(x) = {{{k^{\gamma + {1 \over 2}}}{x^{ - \varsigma - \varsigma ' + \gamma + {\lambda \over k} + {\nu \over k}}}} \over {{2^{{\nu \over k} + 1}}}}} \hfill \cr {{ \times _3}\Psi _5^k\left[ {\matrix{ {( - k\tau - \lambda - \nu , - 2k),} & {(k\varsigma + k\varsigma ' - k\gamma - nu, - 2k),} \cr {( - \lambda - \nu , - 2k),} & {(k\varsigma - k\tau - \lambda - \nu , - 2k),} \cr } } \right.} \hfill \cr {\left. {\matrix{ {(k\varsigma + k\tau ' - k\gamma - \lambda - \nu , - 2k)} & {} \cr {(k\varsigma + k\varsigma ' + k\tau ' - k\gamma - \lambda - \nu , - 2k),} & {(\nu + {{3k} \over 2},k),({{3k} \over 2},k)} \cr } \;\;|{{ - c{x^2}k} \over 4}} \right].} \hfill \cr }

Proof

On using (1.16) and taking the right-hand sided MSM fractional integral operator inside the summation, the left hand side of (2.2) becomes =n=0(c)nΓk(nk+ν+3k2)Γ(n+32)n!22n+νk+1(Iς,ς,τ,τ,γ{tλk+νk+2n})(x) = \sum\limits_{n = 0}^\infty {{{{( - c)}^n}} \over {{\Gamma _k}(nk + \nu + {{3k} \over 2})\Gamma (n + {3 \over 2})n{{!2}^{2n + {\nu \over k} + 1}}}}\left( {I_ - ^{\varsigma ,\varsigma ',\tau ,\tau ',\gamma }\{ {t^{{\lambda \over k} + {\nu \over k} + 2n}}\} } \right)(x) On using (1.19), we get =n=0(c)nxςς+γ+λk+νk+2nΓk(nk+ν+3k2)Γ(n+32)n!22n+νk+1Γ(τλkνk2n)Γ(λkνk2n)×Γ(ς+τγλkνk2n)Γ(ς+ςγλkνk2n)Γ(ς+ς+τγλkνk2n)Γ(ςτλkνk2n)=n=0(cx2)nxςς+γ+λk+νkΓk(nk+ν+3k2)n!22n+νk+1Γ(τλkνk2n)Γ(ς+ςγλkνk2n)Γ(n+32)Γ(λkνk2n)Γ(ςτλkνk2n)×Γ(ς+τγλkνk2n)Γ(ς+ς+τγλkνk2n)=xςς+γ+λk+νk2νk+1kγ12n=0(ckx24)n1n!Γk(kτλν2nk)Γk(λν2nk)Γk(kςkτλν2nk)×Γk(kς+kςkγλν2nk)Γk(kς+kτkγλν2nk)Γk(kς+kς+kτkγλν2nk)Γk(nk+ν+3k2)Γk(3k2+nk)\matrix{ { = \sum\limits_{n = 0}^\infty {{{{( - c)}^n}{x^{ - \varsigma - \varsigma ' + \gamma + {\lambda \over k} + {\nu \over k} + 2n}}} \over {{\Gamma _k}(nk + \nu + {{3k} \over 2})\Gamma (n + {3 \over 2})n{{!2}^{2n + {\nu \over k}}} + 1}}{{\Gamma ( - \tau - {\lambda \over k} - {\nu \over k} - 2n)} \over {\Gamma ( - {\lambda \over k} - {\nu \over k} - 2n)}}} \hfill \cr { \times {{\Gamma (\varsigma + \tau ' - \gamma - {\lambda \over k} - {\nu \over k} - 2n)\Gamma (\varsigma + \varsigma ' - \gamma - {\lambda \over k} - {\nu \over k} - 2n)} \over {\Gamma (\varsigma + \varsigma ' + \tau ' - \gamma - {\lambda \over k} - {\nu \over k} - 2n)\Gamma (\varsigma - \tau - {\lambda \over k} - {\nu \over k} - 2n)}}} \hfill \cr { = \sum\limits_{n = 0}^\infty {{{{( - c{x^2})}^n}{x^{ - \varsigma - \varsigma ' + \gamma + {\lambda \over k} + {\nu \over k}}}} \over {{\Gamma _k}(nk + \nu + {{3k} \over 2})n{{!2}^{2n + {\nu \over k} + 1}}}}{{\Gamma ( - \tau - {\lambda \over k} - {\nu \over k} - 2n)\Gamma (\varsigma + \varsigma ' - \gamma - {\lambda \over k} - {\nu \over k} - 2n)} \over {\Gamma (n + {3 \over 2})\Gamma ( - {\lambda \over k} - {\nu \over k} - 2n)\Gamma (\varsigma - \tau - {\lambda \over k} - {\nu \over k} - 2n)}}} \hfill \cr { \times {{\Gamma (\varsigma + \tau ' - \gamma - {\lambda \over k} - {\nu \over k} - 2n)} \over {\Gamma (\varsigma + \varsigma ' + \tau ' - \gamma - {\lambda \over k} - {\nu \over k} - 2n)}}} \hfill \cr { = {{{x^{ - \varsigma - \varsigma ' + \gamma + {\lambda \over k} + {\nu \over k}}}} \over {{2^{{\nu \over k} + 1}}{k^{ - \gamma - {1 \over 2}}}}}\sum\limits_{n = 0}^\infty {{\left( {{{ - ck{x^2}} \over 4}} \right)}^n}{1 \over {n!}}{{{\Gamma _k}( - k\tau - \lambda - \nu - 2nk)} \over {{\Gamma _k}( - \lambda - \nu - 2nk){\Gamma _k}(k\varsigma - k\tau - \lambda - \nu - 2nk)}}} \hfill \cr { \times {{{\Gamma _k}(k\varsigma + k\varsigma ' - k\gamma - \lambda - \nu - 2nk){\Gamma _k}(k\varsigma + k\tau ' - k\gamma - \lambda - \nu - 2nk)} \over {{\Gamma _k}(k\varsigma + k\varsigma ' + k\tau ' - k\gamma - \lambda - \nu - 2nk){\Gamma _k}(nk + \nu + {{3k} \over 2}){\Gamma _k}({{3k} \over 2} + nk)}}} \hfill \cr } and the result follows on making use of (1.5) and definition of generalized k-Wright function.

Theorem 3

Let ς, ς′, τ, τ′, γ, ρ ∈ ℂ and k ∈ ℝ+ be such that ℜ(γ) > 0, (γ)>0,(λk)>max{(τ),(ςς+γ),(ςτ+γ)}\Re (\gamma ) > 0,\Re ({\lambda \over k}) > \max \{ \Re (\tau ),\Re ( - \varsigma - \varsigma ' + \gamma ),\Re ( - \varsigma - \tau ' + \gamma )\} . Also let c ∈ ℝ; ν > −1, then for t > 0 (Iς,ς,τ,τ,γ(tλkSν,ck(t)))(x)=kγ12xςς+γ+νkλk+12νk+1×3Ψ5k[(kτ+λν,2k),(kς+kςkγ+λnuk,2k),(λνk,2k),(kςkτ+λνk,2k),(kς+kτkγ+λνk,2k)(kς+kς+kτkγ+λνk,2k),(ν+3k2,k),(3k2,k)|cx2k4].\matrix{ {\left( {I_ - ^{\varsigma ,\varsigma ',\tau ,\tau ',\gamma }\left( {{t^{{{ - \lambda } \over k}}}S_{\nu ,c}^k(t)} \right)} \right)(x) = {{{k^{\gamma - {1 \over 2}}}{x^{ - \varsigma - \varsigma ' + \gamma + {\nu \over k} - {\lambda \over k} + 1}}} \over {{2^{{\nu \over k} + 1}}}}} \hfill \cr {{ \times _3}\Psi _5^k\left[ {\matrix{ {( - k\tau + \lambda - \nu , - 2k),} & {(k\varsigma + k\varsigma ' - k\gamma + \lambda - nu - k, - 2k),} \cr {( - \lambda - \nu - k, - 2k),} & {(k\varsigma - k\tau + \lambda - \nu - k, - 2k),} \cr } } \right.} \hfill \cr {\left. {\matrix{ {(k\varsigma + k\tau ' - k\gamma + \lambda - \nu - k, - 2k)} & {} \cr {(k\varsigma + k\varsigma ' + k\tau ' - k\gamma + \lambda - \nu - k, - 2k),} & {(\nu + {{3k} \over 2},k),({{3k} \over 2},k)} \cr } \;\;|{{ - c{x^2}k} \over 4}} \right].} \hfill \cr }

Proof

On using (1.16) and taking the right-hand sided MSM fractional integral operator inside the summation, the left hand side of (2.3) becomes =n=0(c)nΓk(nk+ν+3k2)Γ(n+32)n!22n+νk+1(Iς,ς,τ,τ,γ{tνλk+2n+1}) = \sum\limits_{n = 0}^\infty {{{{( - c)}^n}} \over {{\Gamma _k}(nk + \nu + {{3k} \over 2})\Gamma (n + {3 \over 2})n{{!2}^{2n + {\nu \over k} + 1}}}}\left( {I_ - ^{\varsigma ,\varsigma ',\tau ,\tau ',\gamma }\{ {t^{{{\nu - \lambda } \over k} + 2n + 1}}\} } \right) On using (1.19), we obtain =(c)ntςς+γ+νkλk+2n+1Γk(nk+ν+3k2)Γ(n+32)n!22n+νk+1Γ(τ+λνk2n1)Γ(λnuk2n1)×Γ(ς+ςγ+λνk2n1)Γ(ς+τγ+λνk2n1)γ(ςτ+λνk2n1)Γ(ς+ς+τγ+λνk2n1)\matrix{ { = {{{{( - c)}^n}{t^{ - \varsigma - \varsigma ' + \gamma + {\nu \over k} - {\lambda \over k} + 2n + 1}}} \over {{\Gamma _k}(nk + \nu + {{3k} \over 2})\Gamma (n + {3 \over 2})n{{!2}^{2n + {\nu \over k} + 1}}}}{{\Gamma ( - \tau + {{\lambda - \nu } \over k} - 2n - 1)} \over {\Gamma ({{\lambda - nu} \over k} - 2n - 1)}}} \hfill \cr { \times {{\Gamma (\varsigma + \varsigma ' - \gamma + {{\lambda - \nu } \over k} - 2n - 1)\Gamma (\varsigma + \tau ' - \gamma + {{\lambda - \nu } \over k} - 2n - 1)} \over {\gamma (\varsigma - \tau + {{\lambda - \nu } \over k} - 2n - 1)\Gamma (\varsigma + \varsigma ' + \tau ' - \gamma + {{\lambda - \nu } \over k} - 2n - 1)}}} \hfill \cr } Making use of (1.5), we get =xςς+γ+νkλk+1kγ+122νk+1n=0(ckx2)n4nn!Γk(kτ+λνk2nk)Γk(λνk2nk)Γk(kςkτ+λνk2nk)×Γk(kς+kςkγ+λνk2nk)Γk(kς+kτkγ+λνk2nk)Γk(kς+kς+kτkγ+λνk2nk)Γk(nk+ν+3k2)Γk(nk+3k2)\matrix{ { = {{{x^{ - \varsigma - \varsigma ' + \gamma + {\nu \over k} - {\lambda \over k} + 1}}} \over {{k^{ - \gamma + {1 \over 2}}}{2^{{\nu \over k} + 1}}}}\sum\limits_{n = 0}^\infty {{{{( - ck{x^2})}^n}} \over {{4^n}n!}}{{{\Gamma _k}( - k\tau + \lambda - \nu - k - 2nk)} \over {{\Gamma _k}(\lambda - \nu - k - 2nk){\Gamma _k}(k\varsigma - k\tau + \lambda - \nu - k - 2nk)}}} \hfill \cr { \times {{{\Gamma _k}(k\varsigma + k\varsigma ' - k\gamma + \lambda - \nu - k - 2nk){\Gamma _k}(k\varsigma + k\tau ' - k\gamma + \lambda - \nu - k - 2nk)} \over {{\Gamma _k}(k\varsigma + k\varsigma ' + k\tau ' - k\gamma + \lambda - \nu - k - 2nk){\Gamma _k}(nk + \nu + {{3k} \over 2}){\Gamma _k}(nk + {{3k} \over 2})}}} \hfill \cr } This on expressing in terms of k-Wright function pΨqk_p\Psi _q^k using (1.2) leads to the right-hand side of (2.3). This completes the proof of theorem.

The next theorem obtains the left-hand sided MSM fractional differentiation of k-Struve function.

Theorem 4

Let ς, ς′, τ, τ′, γ, ρ ∈ ℂ and k ∈ ℝ+ be such that (λk)>max{0,(ς+τ),(ςςτ+γ)}\Re ({\lambda \over k}) > \max \{ 0,\Re ( - \varsigma + \tau ),\Re ( - \varsigma - \varsigma ' - \tau ' + \gamma )\} . Also let c ∈ ℝ; ν > −1, then for t > 0 (D0+ς,ς,τ,τ,γ(tλk1Sν,ck(t)))(x)=kγ+12xς+ςγ+λk+νk2νk+1×3Ψ5k[(λ+ν+k,2k),(kτ+kς+λ+ν+k,2k),(kτ+λ+ν+k,2k),(kς+kςkγ+λ+ν+k,2k),(kς+kς+kτkγ+λ+ν+k,2k)(kς+kτkγ+λ+ν+k,2k),(ν+3k2,k),(3k2,k)|cx2k4].\matrix{ {\left( {D_{0 + }^{\varsigma ,\varsigma ',\tau ,\tau ',\gamma }\left( {{t^{{\lambda \over k} - 1}}S_{\nu ,c}^k(t)} \right)} \right)(x) = {{{k^{ - \gamma + {1 \over 2}}}{x^{\varsigma + \varsigma ' - \gamma + {\lambda \over k} + {\nu \over k}}}} \over {{2^{{\nu \over k} + 1}}}}} \hfill \cr {{ \times _3}\Psi _5^k\left[ {\matrix{ {(\lambda + \nu + k,2k),} & {( - k\tau + k\varsigma + \lambda + \nu + k,2k),} \cr {( - k\tau + \lambda + \nu + k,2k),(k\varsigma + k\varsigma ' - k\gamma + \lambda + \nu + k,2k),} \cr } } \right.} \hfill \cr {\left. {\matrix{ {(k\varsigma + k\varsigma ' + k\tau - k\gamma + \lambda + \nu + k,2k)} & {} \cr {(k\varsigma + k\tau ' - k\gamma + \lambda + \nu + k,2k),} & {(\nu + {{3k} \over 2},k),({{3k} \over 2},k)} \cr } \;\;|{{ - c{x^2}k} \over 4}} \right].} \hfill \cr }

Proof

On using (1.16) and taking the left-hand sided MSM fractional derivative inside the summation, the left-hand side of (2.4) becomes =n=0(c)nΓk(nk+ν+3k2)Γ(n+32)n!2νk+2n+1(D0+ς,ς,τ,τ,γ(tλk+νk+2n)) = \sum\limits_{n = 0}^\infty {{{{( - c)}^n}} \over {{\Gamma _k}(nk + \nu + {{3k} \over 2})\Gamma (n + {3 \over 2})n{{!2}^{{\nu \over k} + 2n + 1}}}}\left( {D_{0 + }^{\varsigma ,\varsigma ',\tau ,\tau ',\gamma }\left( {{t^{{\lambda \over k} + {\nu \over k} + 2n}}} \right)} \right) Using (1.20) in above term, we obtain =n=0(c)nΓ(λk+νk+2n+1)Γ(τ+ς+λk+νk+2n+1)Γk(nk+ν+3k2)Γ(n+32)n!2νk+2n+1Γ(τ+λk+νk+2n+1)×Γ(ς+ς+τγ+λk+νk+2n+1)Γ(ς+ςγ+λk+νk+2n+1)Γ(ς+τγ+λk+νk+2n+1)xς+ςγ+λk+νk+2n=xς+ςγλk+νk2νk+1n=0(cx2)nn!4nΓk(nk+ν+3k2)Γ(λk+νk+2n+1)Γ(n+32)Γ(τ+λk+νk+2n+1)×Γ(τ+ς+λk+νk+2n+1)Γ(ς+ς+τγ+λk+νk+2n+1)Γ(ς+ςγ+λk+νk+2n+1)Γ(ς+τγ+λk+νk+2n+1)=kγ+12xς+ςγ+λk+νk2νk+1n=0(ckx2)nn!4n×Γk(λ+ν+k+2nk)Γk(kτ+kς+λ+ν+k+2nk)Γk(nk+ν+3k2)Γk(nk+3k2)Γk(kτ+λ+ν+k+2nk)×Γk(kς+kς+kτkγ+λ+ν+k+2nk)Γk(kς+kςkγ+λ+ν+k+2nk)Γk(kς+kτkγ+λ+ν+k+2nk)\matrix{ { = \sum\limits_{n = 0}^\infty {{{{( - c)}^n}\Gamma ({\lambda \over k} + {\nu \over k} + 2n + 1)\Gamma ( - \tau + \varsigma + {\lambda \over k} + {\nu \over k} + 2n + 1)} \over {{\Gamma _k}(nk + \nu + {{3k} \over 2})\Gamma (n + {3 \over 2})n{{!2}^{{\nu \over k} + 2n + 1}}\Gamma ( - \tau + {\lambda \over k} + {\nu \over k} + 2n + 1)}}} \hfill \cr { \times {{\Gamma (\varsigma + \varsigma ' + \tau ' - \gamma + {\lambda \over k} + {\nu \over k} + 2n + 1)} \over {\Gamma (\varsigma + \varsigma ' - \gamma + {\lambda \over k} + {\nu \over k} + 2n + 1)\Gamma (\varsigma + \tau ' - \gamma + {\lambda \over k} + {\nu \over k} + 2n + 1)}}{x^{\varsigma + \varsigma ' - \gamma + {\lambda \over k} + {\nu \over k} + 2n}}} \hfill \cr { = {{{x^{\varsigma + \varsigma ' - \gamma {\lambda \over k} + {\nu \over k}}}} \over {{2^{{\nu \over k} + 1}}}}\sum\limits_{n = 0}^\infty {{{{( - c{x^2})}^n}} \over {n{{!4}^n}{\Gamma _k}(nk + \nu + {{3k} \over 2})}}{{\Gamma ({\lambda \over k} + {\nu \over k} + 2n + 1)} \over {\Gamma (n + {3 \over 2})\Gamma ( - \tau + {\lambda \over k} + {\nu \over k} + 2n + 1)}}} \hfill \cr { \times {{\Gamma ( - \tau + \varsigma + {\lambda \over k} + {\nu \over k} + 2n + 1)\Gamma (\varsigma + \varsigma ' + \tau ' - \gamma + {\lambda \over k} + {\nu \over k} + 2n + 1)} \over {\Gamma (\varsigma + \varsigma ' - \gamma + {\lambda \over k} + {\nu \over k} + 2n + 1)\Gamma (\varsigma + \tau ' - \gamma + {\lambda \over k} + {\nu \over k} + 2n + 1)}}} \hfill \cr { = {{{k^{ - \gamma + {1 \over 2}}}{x^{\varsigma + \varsigma ' - \gamma + {\lambda \over k} + {\nu \over k}}}} \over {{2^{{\nu \over k} + 1}}}}\sum\limits_{n = 0}^\infty {{{{( - ck{x^2})}^n}} \over {n{{!4}^n}}}} \hfill \cr { \times {{{\Gamma _k}(\lambda + \nu + k + 2nk){\Gamma _k}( - k\tau + k\varsigma + \lambda + \nu + k + 2nk)} \over {{\Gamma _k}(nk + \nu + {{3k} \over 2}){\Gamma _k}(nk + {{3k} \over 2}){\Gamma _k}( - k\tau + \lambda + \nu + k + 2nk)}}} \hfill \cr { \times {{{\Gamma _k}(k\varsigma + k\varsigma ' + k\tau ' - k\gamma + \lambda + \nu + k + 2nk)} \over {{\Gamma _k}(k\varsigma + k\varsigma ' - k\gamma + \lambda + \nu + k + 2nk){\Gamma _k}(k\varsigma + k\tau ' - k\gamma + \lambda + \nu + k + 2nk)}}} \hfill \cr } In above term, we use equation (1.5), and the result follows by using (1.2), then we arrive at (2.4).

The next theorem gives the right-hand sided MSM fractional derivative of k-Struve function.

Theorem 5

Let ς, ς′, τ, τ′, γ, ρ ∈ ℂ and k ∈ ℝ+ be such that (λk)>max{(τ),(ς+τγ),(ς+ςγ)+[(γ)]+1}\Re ({\lambda \over k}) > \max \{ \Re ( - \tau '),\Re (\varsigma ' + \tau - \gamma ),\Re (\varsigma + \varsigma ' - \gamma ) + [\Re (\gamma )] + 1\} . Also let c ∈ ℝ; ν > −1, then for t > 0 (Dς,ς,τ,τ,γ(tλk1Sν,ck(t)))(x)=kγ+12xς+ςγ+λk+νk2νk+1×3Ψ5k[(kτλν,2k),(kςkς+kγλν,2k),(λν,2k),(kς+kτλν,2k),(kς+kτ+kγλν,2k)(kςkςkτ+kγλν,2k),(ν+3k2,k),(3k2,k)|cx2k4].\matrix{ {\left( {D_ - ^{\varsigma ,\varsigma ',\tau ,\tau ',\gamma }\left( {{t^{{\lambda \over k} - 1}}S_{\nu ,c}^k(t)} \right)} \right)(x) = {{{k^{ - \gamma + {1 \over 2}}}{x^{\varsigma + \varsigma ' - \gamma + {\lambda \over k} + {\nu \over k}}}} \over {{2^{{\nu \over k} + 1}}}}} \hfill \cr {{ \times _3}\Psi _5^k\left[ {\matrix{ {(k\tau ' - \lambda - \nu , - 2k),} & {( - k\varsigma - k\varsigma ' + k\gamma - \lambda - \nu , - 2k),} \cr {( - \lambda - \nu , - 2k),} & {( - k\varsigma ' + k\tau ' - \lambda - \nu , - 2k),} \cr } } \right.} \hfill \cr {\left. {\matrix{ {( - k\varsigma ' + k\tau + k\gamma - \lambda - \nu , - 2k)} & {} \cr {( - k\varsigma - k\varsigma ' - k\tau + k\gamma - \lambda - \nu , - 2k),} & {(\nu + {{3k} \over 2},k),({{3k} \over 2},k)} \cr } \;\;|{{ - c{x^2}k} \over 4}} \right].} \hfill \cr }

Proof

On using (1.16) and taking the left-hand sided MSM fractional derivative inside the summation, the left-hand side of (2.5) becomes =n=0(c)nΓk(nk+ν+3k2)Γ(n+32)n!2νk+2n+1(Dς,ς,τ,τ,γ(tλk+νk+2n)) = \sum\limits_{n = 0}^\infty {{{{( - c)}^n}} \over {{\Gamma _k}(nk + \nu + {{3k} \over 2})\Gamma (n + {3 \over 2})n{{!2}^{{\nu \over k} + 2n + 1}}}}\left( {D_ - ^{\varsigma ,\varsigma ',\tau ,\tau ',\gamma }\left( {{t^{{\lambda \over k} + {\nu \over k} + 2n}}} \right)} \right) Using (1.21) in above term, we obtain =n=0(c)nΓ(τλkνk2n)Γk(nk+ν+3k2)Γ(n+32)n!2νk+2n+1Γ(λkνk2n)×Γ(ςς+γλkνk2n)Γ(ςτ+γλkνk2n)Γ(ςςτ+γλkνk2n)Γ(ς+τλkνk2n)xς+ςγ+λk+νk+2n=xς+ςγλk+νk2νk+1n=0(cx2)nn!4nΓk(nk+ν+3k2)Γ(τλkνk2n)Γ(λkνk2n)×Γ(ςς+γλkνk2n)Γ(ςτ+γλkνk2n)Γ(ς+τλkνk2n)Γ(ςςτ+γλkνk2n)=kγ+12xς+ςγ+λk+νk2νk+1n=0(ckx2)nn!4n×Γk(kτλν2nk)Γk(kςkς+kγλν2nk)Γk(λν2nk)Γk(kς+kτλν2nk)×Γk(kςkτ+kγλν2nk)Γk(kςkςkτ+kγλν2nk)tΓk(ν+3k2+nk)Γk(3k2+nk)\matrix{ { = \sum\limits_{n = 0}^\infty {{{{( - c)}^n}\Gamma (\tau ' - {\lambda \over k} - {\nu \over k} - 2n)} \over {{\Gamma _k}(nk + \nu + {{3k} \over 2})\Gamma (n + {3 \over 2})n{{!2}^{{\nu \over k} + 2n + 1}}\Gamma ( - {\lambda \over k} - {\nu \over k} - 2n)}}} \hfill \cr { \times {{\Gamma ( - \varsigma - \varsigma ' + \gamma - {\lambda \over k} - {\nu \over k} - 2n)\Gamma ( - \varsigma ' - \tau + \gamma - {\lambda \over k} - {\nu \over k} - 2n)} \over {\Gamma ( - \varsigma - \varsigma ' - \tau + \gamma - {\lambda \over k} - {\nu \over k} - 2n)\Gamma ( - \varsigma ' + \tau ' - {\lambda \over k} - {\nu \over k} - 2n)}}{x^{\varsigma + \varsigma ' - \gamma + {\lambda \over k} + {\nu \over k} + 2n}}} \hfill \cr { = {{{x^{\varsigma + \varsigma ' - \gamma {\lambda \over k} + {\nu \over k}}}} \over {{2^{{\nu \over k} + 1}}}}\sum\limits_{n = 0}^\infty {{{{( - c{x^2})}^n}} \over {n{{!4}^n}{\Gamma _k}(nk + \nu + {{3k} \over 2})}}{{\Gamma (\tau ' - {\lambda \over k} - {\nu \over k} - 2n)} \over {\Gamma ( - {\lambda \over k} - {\nu \over k} - 2n)}}} \hfill \cr { \times {{\Gamma ( - \varsigma - \varsigma ' + \gamma - {\lambda \over k} - {\nu \over k} - 2n)\Gamma ( - \varsigma ' - \tau + \gamma - {\lambda \over k} - {\nu \over k} - 2n)} \over {\Gamma ( - \varsigma ' + \tau ' - {\lambda \over k} - {\nu \over k} - 2n)\Gamma ( - \varsigma - \varsigma ' - \tau + \gamma - {\lambda \over k} - {\nu \over k} - 2n)}}} \hfill \cr { = {{{k^{ - \gamma + {1 \over 2}}}{x^{\varsigma + \varsigma ' - \gamma + {\lambda \over k} + {\nu \over k}}}} \over {{2^{{\nu \over k} + 1}}}}\sum\limits_{n = 0}^\infty {{{{( - ck{x^2})}^n}} \over {n{{!4}^n}}}} \hfill \cr { \times {{{\Gamma _k}(k\tau ' - \lambda - \nu - 2nk){\Gamma _k}( - k\varsigma - k\varsigma ' + k\gamma - \lambda - \nu - 2nk)} \over {{\Gamma _k}( - \lambda - \nu - 2nk){\Gamma _k}( - k\varsigma ' + k\tau ' - \lambda - \nu - 2nk)}}} \hfill \cr { \times {{{\Gamma _k}( - k\varsigma ' - k\tau + k\gamma - \lambda - \nu - 2nk)} \over {{\Gamma _k}( - k\varsigma - k\varsigma ' - k\tau + k\gamma - \lambda - \nu - 2nk)t{\Gamma _k}(\nu + {{3k} \over 2} + nk){\Gamma _k}({{3k} \over 2} + nk)}}} \hfill \cr } Thus, in accordance with (1.2), we get the required result (2.5).

Theorem 6

Let ς, ς′, τ, τ′, γ, ρ ∈ ℂ and k ∈ ℝ+ be such that (λk)>max{(τ),(ς+τγ),(ς+ςγ)+[(γ)]+1}\Re ({\lambda \over k}) > \max \{ \Re ( - \tau '),\Re (\varsigma ' + \tau - \gamma ),\Re (\varsigma + \varsigma ' - \gamma ) + [\Re (\gamma )] + 1\} . Also let c ∈ ℝ; ν > −1, then for t > 0 (Dς,ς,τ,τ,γ(tλkSν,ck(t)))(x)=kγ+12xς+ςγ+λk+νk+12νk+1×3Ψ5k[(kτ+λνk,2k),(kςkς+kγλνk,2k),(λνk,2k),(kς+kτ+λνk,2k),(kςkτ+kγ+λνk,2k)(kςkςkτ+kγ+λνk,2k),(ν+3k2,k),(3k2,k)|cx2k4].\matrix{ {\left( {D_ - ^{\varsigma ,\varsigma ',\tau ,\tau ',\gamma }\left( {{t^{ - {\lambda \over k}}}S_{\nu ,c}^k(t)} \right)} \right)(x) = {{{k^{ - \gamma + {1 \over 2}}}{x^{\varsigma + \varsigma ' - \gamma + {\lambda \over k} + {\nu \over k} + 1}}} \over {{2^{{\nu \over k} + 1}}}}} \hfill \cr {{ \times _3}\Psi _5^k\left[ {\matrix{ {(k\tau ' + \lambda - \nu - k, - 2k),} & {( - k\varsigma - k\varsigma ' + k\gamma - \lambda - \nu - k, - 2k),} \cr {( - \lambda - \nu - k, - 2k),} & {( - k\varsigma ' + k\tau ' + \lambda - \nu - k, - 2k),} \cr } } \right.} \hfill \cr {\left. {\matrix{ {( - k\varsigma ' - k\tau + k\gamma + \lambda - \nu - k, - 2k)} & {} \cr {( - k\varsigma - k\varsigma ' - k\tau + k\gamma + \lambda - \nu - k, - 2k),} & {(\nu + {{3k} \over 2},k),({{3k} \over 2},k)} \cr } \;\;|{{ - c{x^2}k} \over 4}} \right].} \hfill \cr }

Proof

On using (1.16) and taking the right-hand sided MSM fractional derivative inside the summation, the left-hand side of (2.6) becomes =n=0(c)nΓk(nk+ν+3k2)Γ(n+32)n!2νk+2n+1(Dς,ς,τ,τ,γ(tνkλk+2n+1)) = \sum\limits_{n = 0}^\infty {{{{( - c)}^n}} \over {{\Gamma _k}(nk + \nu + {{3k} \over 2})\Gamma (n + {3 \over 2})n{{!2}^{{\nu \over k} + 2n + 1}}}}\left( {D_ - ^{\varsigma ,\varsigma ',\tau ,\tau ',\gamma }\left( {{t^{{\nu \over k} - {\lambda \over k} + 2n + 1}}} \right)} \right) Using (1.21), we have =n=0(c)nΓk(nk+ν+3k2)Γ(n+32)n!2νk+2n+1Γ(τ+λνk2n1)Γ(λνk2n1)×Γ(ςς+γ+λνk2n1)Γ(ςτ+γ+λνk2n1)Γ(ς+τ+λνk2n1)Γ(ςςτ+γ+λνk2n1)xς+ςγ+νkλk+2n+1\matrix{ { = \sum\limits_{n = 0}^\infty {{{{( - c)}^n}} \over {{\Gamma _k}(nk + \nu + {{3k} \over 2})\Gamma (n + {3 \over 2})n{{!2}^{{\nu \over k} + 2n + 1}}}}{{\Gamma (\tau ' + {{\lambda - \nu } \over k} - 2n - 1)} \over {\Gamma ({{\lambda - \nu } \over k} - 2n - 1)}}} \hfill \cr { \times {{\Gamma ( - \varsigma - \varsigma ' + \gamma + {{\lambda - \nu } \over k} - 2n - 1)\Gamma ( - \varsigma ' - \tau + \gamma + {{\lambda - \nu } \over k} - 2n - 1)} \over {\Gamma ( - \varsigma ' + \tau ' + {{\lambda - \nu } \over k} - 2n - 1)\Gamma ( - \varsigma - \varsigma ' - \tau + \gamma + {{\lambda - \nu } \over k} - 2n - 1)}}{x^{\varsigma + \varsigma ' - \gamma + {\nu \over k} - {\lambda \over k} + 2n + 1}}} \hfill \cr } Making use of (1.5), we obtain =tς+ςγ+νkλk+12νk+1n=0(ckt2)nn!4nkγ12×Γk(kτ+λνk2nk)Γk(λνk2nk)Γk(kς+kτ+λνk2nk)×Γk(kςkς+kγ+λνk2nk)Γk(kςkτ+kγ+λνk2nk)Γk(kςkςkτ+kγ+λνk2nk)Γk(nk+ν+3k2)Γk(nk+3k2)\matrix{ { = {{{t^{\varsigma + \varsigma ' - \gamma + {\nu \over k} - {\lambda \over k} + 1}}} \over {{2^{{\nu \over k} + 1}}}}\sum\limits_{n = 0}^\infty {{{{( - ck{t^2})}^n}} \over {n{{!4}^n}{k^{\gamma - {1 \over 2}}}}}} \hfill \cr { \times {{{\Gamma _k}(k\tau ' + \lambda - \nu - k - 2nk)} \over {{\Gamma _k}(\lambda - \nu - k - 2nk){\Gamma _k}( - k\varsigma ' + k\tau ' + \lambda - \nu - k - 2nk)}}} \hfill \cr { \times {{{\Gamma _k}( - k\varsigma - k\varsigma ' + k\gamma + \lambda - \nu - k - 2nk){\Gamma _k}( - k\varsigma ' - k\tau + k\gamma + \lambda - \nu - k - 2nk)} \over {{\Gamma _k}( - k\varsigma - k\varsigma ' - k\tau + k\gamma + \lambda - \nu - k - 2nk){\Gamma _k}(nk + \nu + {{3k} \over 2}){\Gamma _k}(nk + {{3k} \over 2})}}} \hfill \cr } This on expressing in terms of k-Wright function pΨqk_p\Psi _q^k using (1.2) leads to the right-hand side of (2.6). This completes the proof.

Concluding Remark

MSM fractional calculus operators have more advantage due to the generalize of Riemann-Liouville, Weyl, Erdélyi-Kober, and Saigo's fractional calculus operators; therefore, many authors are called as general operator. Now we are going to conclude of this paper by emphasizing that our leading results (Theorems 1 – 6) can be derived as the specific cases involving familiar fractional calculus operators as above said. On other hand, the k Struve function defined in (1.16) possesses the lead that a number of special functions occur to be the particular cases. Some of special cases respect to the integrals relating with k Struve function have been discovered in the earlier research works by various authors with not the same arguments.

eISSN:
2444-8656
Lingua:
Inglese
Frequenza di pubblicazione:
Volume Open
Argomenti della rivista:
Life Sciences, other, Mathematics, Applied Mathematics, General Mathematics, Physics