A Multi-Objective Optimization Framework for Low-Carbon Index Construction and Application in Green Finance
17 mar 2025
O artykule
Data publikacji: 17 mar 2025
Otrzymano: 29 paź 2024
Przyjęty: 17 lut 2025
DOI: https://doi.org/10.2478/amns-2025-0834
Słowa kluczowe
© 2025 Gengrun Liu, published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 International License.
Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Computational performance comparison_
Algorithm | Runtime | Iterations | Convergence Speed |
---|---|---|---|
Proposed Hybrid Method | 45 | 120 | 60 |
Genetic Algorithm (GA) | 90 | 150 | 90 |
Gradient-Based Method | 70 | 100 | 80 |
Algorithm | Runtime | Iterations | Convergence Speed |
Selected Pareto-optimal solutions_
Solution ID | Carbon Emissions | Financial Return | Low-Carbon Index |
---|---|---|---|
A | 100 | 12.5 | 0.85 |
B | 150 | 14.2 | 0.80 |
C | 200 | 15.8 | 0.75 |
D | 250 | 17.0 | 0.70 |
E | 300 | 18.5 | 0.65 |
Computed low-carbon index values across sectors_
Sector | Carbon Intensity | Renewable Energy | Economic Growth | Low-Carbon Index |
---|---|---|---|---|
Energy | 150 | 45 | 3.2 | 0.78 |
Technology | 120 | 50 | 4.0 | 0.82 |
Manufacturing | 300 | 20 | 2.1 | 0.45 |
Transportation | 250 | 30 | 2.5 | 0.58 |
Agriculture | 180 | 35 | 2.8 | 0.67 |