A Multi-Objective Optimization Framework for Low-Carbon Index Construction and Application in Green Finance
17 mars 2025
À propos de cet article
Publié en ligne: 17 mars 2025
Reçu: 29 oct. 2024
Accepté: 17 févr. 2025
DOI: https://doi.org/10.2478/amns-2025-0834
Mots clés
© 2025 Gengrun Liu, published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 International License.
Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Computational performance comparison_
Algorithm | Runtime | Iterations | Convergence Speed |
---|---|---|---|
Proposed Hybrid Method | 45 | 120 | 60 |
Genetic Algorithm (GA) | 90 | 150 | 90 |
Gradient-Based Method | 70 | 100 | 80 |
Algorithm | Runtime | Iterations | Convergence Speed |
Selected Pareto-optimal solutions_
Solution ID | Carbon Emissions | Financial Return | Low-Carbon Index |
---|---|---|---|
A | 100 | 12.5 | 0.85 |
B | 150 | 14.2 | 0.80 |
C | 200 | 15.8 | 0.75 |
D | 250 | 17.0 | 0.70 |
E | 300 | 18.5 | 0.65 |
Computed low-carbon index values across sectors_
Sector | Carbon Intensity | Renewable Energy | Economic Growth | Low-Carbon Index |
---|---|---|---|---|
Energy | 150 | 45 | 3.2 | 0.78 |
Technology | 120 | 50 | 4.0 | 0.82 |
Manufacturing | 300 | 20 | 2.1 | 0.45 |
Transportation | 250 | 30 | 2.5 | 0.58 |
Agriculture | 180 | 35 | 2.8 | 0.67 |