Application of Bayesian Network and Support Vector Machine in Evaluation and Prediction of Network Security Situation
oraz
27 lut 2025
O artykule
Data publikacji: 27 lut 2025
Otrzymano: 13 paź 2024
Przyjęty: 22 sty 2025
DOI: https://doi.org/10.2478/amns-2025-0085
Słowa kluczowe
© 2025 Junjie Cao et al., published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 International License.
Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Evaluation Indicators
Sample classification | attack | normal | |
---|---|---|---|
attack | TP | FN | |
normal | FP | TN |
Time comparison between DNN and BN on test set
Algorithm | Training time(s) | Test time(s) |
---|---|---|
912.365 | 18.984 | |
654.325 | 4.957 |
Time comparison on test sets
Algorithm | Training time(s) | Test time(s) |
---|---|---|
3215.332 | 63.982 | |
1249.547 | 6.487 |
BN Sparse Parameters
Parameter | Value | Experimental optimum value |
---|---|---|
0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 | Two categories0.6, Five categories0.4 | |
0.01, 0.001, 0.000001, 0.05, 0.0005, 0.000005 | Two categories0.000005, Five categories0.001 | |
1, 2, 3, 4, 5, 6 | Two categories3, Five categories3 | |
100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 2000 | Two categories1000, Five categories600 |
Time comparison between DNN and BN on training set
Algorithm | Training time(s) | Test time(s) |
---|---|---|
7236.421 | 98.258 | |
5632.459 | 23.618 |
Comparison of operational efficiency under different algorithms
Method | Classification time(s) | Evaluation time(s) | Total time(s) |
---|---|---|---|
28.5753 | 3.2636 | 31.8339 | |
117.2427 | 4.9744 | 122.2171 | |
50.5316 | 4.6532 | 55.1848 | |
64.6728 | 4.3367 | 69.0095 |
BN Hidden Layer Structure
Number of hidden layers | Two-class network structure | Five-classification network structure |
---|---|---|
[60] | [80] | |
[80,50] | [90,50] | |
[80,50,30] | [90,60,40] | |
[90,70,50,25] | [100,80,50,30] | |
[100,70,45,30,10] | [100,80,60,45,25] |
DNN Parameters
Parameter category | Value |
---|---|
[122,80,50,2],[122,90,60,40,5] | |
Relu,Sigmoid,Softmax | |
Adam | |
128 | |
L2=0.002, Dropout=0.5 | |
0.01 | |
200,600 |
Comparison of Indicators
Hidden layer neuron | AC(%) | DR(%) | FAR(%) |
---|---|---|---|
93.56 | 93.69 | 0.256 | |
92.13 | 92.37 | 0.159 | |
95.36 | 95.21 | 0.134 | |
92.39 | 92.56 | 0.201 | |
85.36 | 85.69 | 0.31 |
Time comparison on training sets
Algorithm | Training time(s) | Test time(s) |
---|---|---|
49567.01 | 354.983 | |
26451.2 | 58.145 |
Comparison of classification results under two categories
Number of hidden layers | DR(%) | Normal | Attack | FAR(%) |
---|---|---|---|---|
98.34 | 98.5 | 97.15 | 1.64 | |
99.45 | 99.5 | 99.11 | 0.55 | |
99.33 | 99.33 | 98.76 | 0.67 | |
99.01 | 99.3 | 98.71 | 0.99 | |
98.21 | 99.09 | 98.01 | 1.79 |
BN Parameters
Parameter category | Value |
---|---|
Network structure | [122,100,70,40,122] |
0.6, 0.4 | |
0.000005, 0.001 | |
3 | |
Adam | |
600, 1000 | |
0.001 | |
500 | |
Sigmoid |
Benchmarking results of BN indicators under hidden layer
Hidden layer structure | AC(%) | DR(%) | FAR(%) | ttrain(s) |
---|---|---|---|---|
99.31 | 99.28 | 0.0962 | 53.69 | |
99.15 | 98.99 | 0.108 | 49.03 | |
98.98 | 98.86 | 0.121 | 44.32 | |
98.66 | 98.33 | 0.135 | 39.03 | |
98.55 | 98.1 | 0.131 | 36.26 | |
95.74 | 98.59 | 0.159 | 25.19 | |
93.68 | 93.01 | 0.163 | 18.98 | |
87.89 | 87.39 | 0.305 | 16.18 | |
88.69 | 87.69 | 0.298 | 13.25 | |
83.36 | 82.26 | 0.361 | 6.25 | |
86.59 | 86.32 | 0.359 | 5.45 |
Comparison of classification results under five categories
Number of hidden layers | DR(%) | Normal | Probe | Dos | U2R | R2L | FAR(%) |
---|---|---|---|---|---|---|---|
97.56 | 98.36 | 97.15 | 97.89 | 24.66 | 84.58 | 2.44 | |
98.23 | 98.64 | 98.01 | 98.12 | 25.39 | 85.66 | 1.77 | |
99.44 | 99.5 | 99.09 | 99.58 | 36.99 | 90.12 | 0.56 | |
99.36 | 99.36 | 98.22 | 99.65 | 24.55 | 87.69 | 0.64 | |
98.89 | 98.89 | 99.01 | 98.75 | 23.68 | 86.99 | 1.11 |
Situation Assessment Values and Grade Division of 10 Groups of Data
Sample number | Actual value | Evaluation value | Situation grade | Operational status |
---|---|---|---|---|
0.19 | 0.18 | Safety | Basically normal | |
0.33 | 0.35 | Low risk | Mild influence | |
0.39 | 0.4 | Low risk | Mild influence | |
0.66 | 0.63 | High risk | Major damage | |
0.05 | 0.06 | Safety | Basically normal | |
0.52 | 0.52 | Moderate risk | Medium threat | |
0.19 | 0.19 | Low risk | Mild influence | |
0.36 | 0.37 | Low risk | Mild influence | |
0.59 | 0.55 | Moderate risk | Medium threat | |
0.18 | 0.15 | Safety | Basically normal |