Accès libre

Application of Bayesian Network and Support Vector Machine in Evaluation and Prediction of Network Security Situation

 et   
27 févr. 2025
À propos de cet article

Citez
Télécharger la couverture

Figure 1.

Linear plane optimal equation diagram
Linear plane optimal equation diagram

Figure 2.

Comparison of two classification performances
Comparison of two classification performances

Figure 3.

Comparison of five classifications performance between DNN and BN
Comparison of five classifications performance between DNN and BN

Figure 4.

Comparison of accuracy rate P
Comparison of accuracy rate P

Figure 5.

Comparison of recall rate R
Comparison of recall rate R

Figure 6.

F1-score comparison
F1-score comparison

Figure 7.

Accuracy AC comparison
Accuracy AC comparison

Figure 8.

Situation results under different algorithms
Situation results under different algorithms

Evaluation Indicators

Sample classification attack normal
Real attack TP FN
normal FP TN

Time comparison between DNN and BN on test set

Algorithm Training time(s) Test time(s)
DNN 912.365 18.984
BN 654.325 4.957

Time comparison on test sets

Algorithm Training time(s) Test time(s)
DNN 3215.332 63.982
BN 1249.547 6.487

BN Sparse Parameters

Parameter Value Experimental optimum value
ρ 0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 Two categories0.6, Five categories0.4
λ 0.01, 0.001, 0.000001, 0.05, 0.0005, 0.000005 Two categories0.000005, Five categories0.001
β 1, 2, 3, 4, 5, 6 Two categories3, Five categories3
epoch 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 2000 Two categories1000, Five categories600

Time comparison between DNN and BN on training set

Algorithm Training time(s) Test time(s)
DNN 7236.421 98.258
BN 5632.459 23.618

Comparison of operational efficiency under different algorithms

Method Classification time(s) Evaluation time(s) Total time(s)
BN 28.5753 3.2636 31.8339
DNN 117.2427 4.9744 122.2171
SVM 50.5316 4.6532 55.1848
DT 64.6728 4.3367 69.0095

BN Hidden Layer Structure

Number of hidden layers Two-class network structure Five-classification network structure
1 [60] [80]
2 [80,50] [90,50]
3 [80,50,30] [90,60,40]
4 [90,70,50,25] [100,80,50,30]
5 [100,70,45,30,10] [100,80,60,45,25]

DNN Parameters

Parameter category Value
Network structure [122,80,50,2],[122,90,60,40,5]
Activation function Relu,Sigmoid,Softmax
Optimization function Adam
Mini-Batch Size 128
Regularization L2=0.002, Dropout=0.5
Learning rate 0.01
epoch 200,600

Comparison of Indicators

Hidden layer neuron AC(%) DR(%) FAR(%)
[110,90,80] 93.56 93.69 0.256
[90,80,60] 92.13 92.37 0.159
[100,70,40] 95.36 95.21 0.134
[90,65,40] 92.39 92.56 0.201
[90,90,90] 85.36 85.69 0.31

Time comparison on training sets

Algorithm Training time(s) Test time(s)
DNN 49567.01 354.983
BN 26451.2 58.145

Comparison of classification results under two categories

Number of hidden layers DR(%) Normal Attack FAR(%)
1 98.34 98.5 97.15 1.64
2 99.45 99.5 99.11 0.55
3 99.33 99.33 98.76 0.67
4 99.01 99.3 98.71 0.99
5 98.21 99.09 98.01 1.79

BN Parameters

Parameter category Value
Network structure [122,100,70,40,122]
ρ 0.6, 0.4
λ 0.000005, 0.001
β 3
Optimization function Adam
epoch 600, 1000
Learning rate 0.001
Batch Size 500
Activation function Sigmoid

Benchmarking results of BN indicators under hidden layer

Hidden layer structure AC(%) DR(%) FAR(%) ttrain(s)
[110,90,80,60,40,20] 99.31 99.28 0.0962 53.69
[105,90,80,60,40] 99.15 98.99 0.108 49.03
[100,80,60,40,20] 98.98 98.86 0.121 44.32
[100,70,50,30] 98.66 98.33 0.135 39.03
[110,70,40,30] 98.55 98.1 0.131 36.26
[90,60,40] 95.74 98.59 0.159 25.19
[80,60,30] 93.68 93.01 0.163 18.98
[90,40] 87.89 87.39 0.305 16.18
[70,30] 88.69 87.69 0.298 13.25
[70] 83.36 82.26 0.361 6.25
[60] 86.59 86.32 0.359 5.45

Comparison of classification results under five categories

Number of hidden layers DR(%) Normal Probe Dos U2R R2L FAR(%)
1 97.56 98.36 97.15 97.89 24.66 84.58 2.44
2 98.23 98.64 98.01 98.12 25.39 85.66 1.77
3 99.44 99.5 99.09 99.58 36.99 90.12 0.56
4 99.36 99.36 98.22 99.65 24.55 87.69 0.64
5 98.89 98.89 99.01 98.75 23.68 86.99 1.11

Situation Assessment Values and Grade Division of 10 Groups of Data

Sample number Actual value Evaluation value Situation grade Operational status
1 0.19 0.18 Safety Basically normal
2 0.33 0.35 Low risk Mild influence
3 0.39 0.4 Low risk Mild influence
4 0.66 0.63 High risk Major damage
5 0.05 0.06 Safety Basically normal
6 0.52 0.52 Moderate risk Medium threat
7 0.19 0.19 Low risk Mild influence
8 0.36 0.37 Low risk Mild influence
9 0.59 0.55 Moderate risk Medium threat
10 0.18 0.15 Safety Basically normal