Research on Efficient Algorithms for Intelligent Computing in Big Data Analytics
, oraz
03 lut 2025
O artykule
Data publikacji: 03 lut 2025
Otrzymano: 15 wrz 2024
Przyjęty: 04 sty 2025
DOI: https://doi.org/10.2478/amns-2025-0020
Słowa kluczowe
© 2025 Xiguo Zhou et al., published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 International License.
Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Comparison of query execution time
Database | Unit: ms | Q1 | Q2 | Q3 | Q4 | Q5 | Q6 | Q7 | Q8 | Q9 | Q10 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
LUBM-5 | Hadoop HDFS | Cold | 235 | 9445 | 241 | 369 | 425 | 1491 | 299 | 365 | 14K | 277 |
Hot | 114 | 9188 | 159 | 152 | 194 | 513 | 109 | 142 | 14K | 152 | ||
Jena-Hbase | Cold | 20K | 11K | 60K | 4256 | 62K | 2378 | NA | NA | NA | 18K | |
Hot | 16K | 10K | 45K | 4024 | 9345 | 864 | NA | 322K | NA | 18K | ||
SHARD | Cold | 156K | 302K | 184K | 212K | 287K | 672K | 65K | 203K | 856K | 200K | |
Hot | 101K | 285K | 112K | 124K | 169K | 611K | 42K | 172K | 432K | 142K | ||
LUBM-50 | Hadoop HDFS | Cold | 244 | 9051 | 303 | 314 | 415 | 2003 | 511 | 425 | 14K | 363 |
Hot | 112 | 8879 | 115 | 164 | 185 | 1734 | 203 | 302 | 14K | 122 | ||
Jena-Hbase | - | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | |
SHARD | Cold | 188K | 415K | 224K | 306K | 179K | 406K | 206K | 108K | 425K | 174K | |
Hot | 116K | 315K | 189K | 177K | 133K | 342K | 166K | 77K | 348K | 130K | ||
LUBM-500 | Hadoop HDFS | Cold | 218 | 8974 | 266 | 273 | 231 | 18K | 237 | 321 | 15K | 227 |
Hot | 112 | 8546 | 105 | 130 | 121 | 17K | 133 | 201 | 15K | 102 | ||
Jena-Hbase | - | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | |
SHARD | Cold | 306K | 986K | 426K | 387K | 462K | 884K | 506K | 472K | 926K | 412K | |
Hot | 245K | 758K | 285K | 204K | 306K | 695K | 330K | 394K | 734K | 283K |
Hadoop HDFS index storage usage
LUBM-5 | LUBM-50 | LUBM-500 | |
---|---|---|---|
Total | 195.4MB | 2.0GB | 17.9GB |
Avg.±Std. | 10.25±1.68MB | 118.00±19.48MB | 1.02GB±203.45MB |
Comparison of clustering time cost of different parallel DBSCAN algorithms
Data set | Algorithm | Clustering time |
---|---|---|
R15 | Naive DBSCAN | 20.485s |
Spark DBSCAN | 17.065s | |
Jain | Naive DBSCAN | 18.746s |
Spark DBSCAN | 15.062s | |
Pathbased | Naive DBSCAN | 17.223s |
Spark DBSCAN | 16.012s | |
Aggregation | Naive DBSCAN | 15.462s |
Spark DBSCAN | 4.726s | |
D31 | Naive DBSCAN | 87.633s |
Spark DBSCAN | 40.745s |
Comparison of clustering result indexes of different parallel DBSCAN algorithms
Data set | Algorithm | Silhouette coefficient | Purity | Rand index | Adjusted Rand index | F1-score |
---|---|---|---|---|---|---|
R15 | Naive DBSCAN | 0.7658 | 0.9644 | 0.9685 | 0.9532 | 0.9412 |
Spark DBSCAN | 0.7346 | 0.9416 | 0.9602 | 0.9263 | 0.9331 | |
Jain | Naive DBSCAN | 0.3015 | 0.9745 | 0.4913 | 0.1026 | 0.2578 |
Spark DBSCAN | 0.3015 | 0.9745 | 0.4913 | 0.1026 | 0.2578 | |
Pathbased | Naive DBSCAN | 0.3562 | 0.9278 | 0.7016 | 0.1152 | 0.1723 |
Spark DBSCAN | 0.3562 | 0.9278 | 0.7016 | 0.1152 | 0.1723 | |
Aggregation | Naive DBSCAN | 0.3325 | 0.8244 | 0.8078 | 0.1605 | 0.2346 |
Spark DBSCAN | 0.3325 | 0.8244 | 0.8078 | 0.1605 | 0.2346 | |
D31 | Naive DBSCAN | 0.5815 | 0.9045 | 0.9952 | 0.8142 | 0.8156 |
Spark DBSCAN | 0.5685 | 0.8712 | 0.9896 | 0.7724 | 0.7789 |