Research on Efficient Algorithms for Intelligent Computing in Big Data Analytics
, and
Feb 03, 2025
About this article
Published Online: Feb 03, 2025
Received: Sep 15, 2024
Accepted: Jan 04, 2025
DOI: https://doi.org/10.2478/amns-2025-0020
Keywords
© 2025 Xiguo Zhou et al., published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 International License.
Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Comparison of query execution time
Database | Unit: ms | Q1 | Q2 | Q3 | Q4 | Q5 | Q6 | Q7 | Q8 | Q9 | Q10 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
LUBM-5 | Hadoop HDFS | Cold | 235 | 9445 | 241 | 369 | 425 | 1491 | 299 | 365 | 14K | 277 |
Hot | 114 | 9188 | 159 | 152 | 194 | 513 | 109 | 142 | 14K | 152 | ||
Jena-Hbase | Cold | 20K | 11K | 60K | 4256 | 62K | 2378 | NA | NA | NA | 18K | |
Hot | 16K | 10K | 45K | 4024 | 9345 | 864 | NA | 322K | NA | 18K | ||
SHARD | Cold | 156K | 302K | 184K | 212K | 287K | 672K | 65K | 203K | 856K | 200K | |
Hot | 101K | 285K | 112K | 124K | 169K | 611K | 42K | 172K | 432K | 142K | ||
LUBM-50 | Hadoop HDFS | Cold | 244 | 9051 | 303 | 314 | 415 | 2003 | 511 | 425 | 14K | 363 |
Hot | 112 | 8879 | 115 | 164 | 185 | 1734 | 203 | 302 | 14K | 122 | ||
Jena-Hbase | - | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | |
SHARD | Cold | 188K | 415K | 224K | 306K | 179K | 406K | 206K | 108K | 425K | 174K | |
Hot | 116K | 315K | 189K | 177K | 133K | 342K | 166K | 77K | 348K | 130K | ||
LUBM-500 | Hadoop HDFS | Cold | 218 | 8974 | 266 | 273 | 231 | 18K | 237 | 321 | 15K | 227 |
Hot | 112 | 8546 | 105 | 130 | 121 | 17K | 133 | 201 | 15K | 102 | ||
Jena-Hbase | - | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | |
SHARD | Cold | 306K | 986K | 426K | 387K | 462K | 884K | 506K | 472K | 926K | 412K | |
Hot | 245K | 758K | 285K | 204K | 306K | 695K | 330K | 394K | 734K | 283K |
Hadoop HDFS index storage usage
LUBM-5 | LUBM-50 | LUBM-500 | |
---|---|---|---|
Total | 195.4MB | 2.0GB | 17.9GB |
Avg.±Std. | 10.25±1.68MB | 118.00±19.48MB | 1.02GB±203.45MB |
Comparison of clustering time cost of different parallel DBSCAN algorithms
Data set | Algorithm | Clustering time |
---|---|---|
R15 | Naive DBSCAN | 20.485s |
Spark DBSCAN | 17.065s | |
Jain | Naive DBSCAN | 18.746s |
Spark DBSCAN | 15.062s | |
Pathbased | Naive DBSCAN | 17.223s |
Spark DBSCAN | 16.012s | |
Aggregation | Naive DBSCAN | 15.462s |
Spark DBSCAN | 4.726s | |
D31 | Naive DBSCAN | 87.633s |
Spark DBSCAN | 40.745s |
Comparison of clustering result indexes of different parallel DBSCAN algorithms
Data set | Algorithm | Silhouette coefficient | Purity | Rand index | Adjusted Rand index | F1-score |
---|---|---|---|---|---|---|
R15 | Naive DBSCAN | 0.7658 | 0.9644 | 0.9685 | 0.9532 | 0.9412 |
Spark DBSCAN | 0.7346 | 0.9416 | 0.9602 | 0.9263 | 0.9331 | |
Jain | Naive DBSCAN | 0.3015 | 0.9745 | 0.4913 | 0.1026 | 0.2578 |
Spark DBSCAN | 0.3015 | 0.9745 | 0.4913 | 0.1026 | 0.2578 | |
Pathbased | Naive DBSCAN | 0.3562 | 0.9278 | 0.7016 | 0.1152 | 0.1723 |
Spark DBSCAN | 0.3562 | 0.9278 | 0.7016 | 0.1152 | 0.1723 | |
Aggregation | Naive DBSCAN | 0.3325 | 0.8244 | 0.8078 | 0.1605 | 0.2346 |
Spark DBSCAN | 0.3325 | 0.8244 | 0.8078 | 0.1605 | 0.2346 | |
D31 | Naive DBSCAN | 0.5815 | 0.9045 | 0.9952 | 0.8142 | 0.8156 |
Spark DBSCAN | 0.5685 | 0.8712 | 0.9896 | 0.7724 | 0.7789 |