Otwarty dostęp

Bifurcation and control for a discrete-time prey–predator model with Holling-IV functional response


Zacytuj

Busłowicz, M. (2012). Robust stability of positive continuous-time linear systems with delays, InternationalJournal of Applied Mathematics and Computer Science20(4): 665-670, DOI: 10.2478/v10006-010-0049-8.10.2478/v10006-010-0049-8Search in Google Scholar

Busłowicz, M. and Ruszewski, A. (2012). Computer method for stability analysis of the Roesser type model of 2D continous-discrete linear systems, InternationalJournal of Applied Mathematics and Computer Science22(2): 401-408, DOI: 10.2478/v10006-012-0030-9.10.2478/v10006-012-0030-9Search in Google Scholar

Duda, J. (2012). A Lyapunov functional for a system with a time-varying delay, International Journal of AppliedMathematics and Computer Science 22(2): 327-337, DOI: 10.2478/v10006-012-0024-7.10.2478/v10006-012-0024-7Search in Google Scholar

Fan, Y. and Li, W. (2004). Permanence for a delayed discrete ratio-dependent predator-prey system with Holling type functional response, Journal of Mathematical Analysis andApplications 299(2): 357-374.10.1016/j.jmaa.2004.02.061Search in Google Scholar

Freedman, H.I. (1976). Graphical stability, enrichment, and pest control by a natural enemy, Mathematical Biosciences31(3-4): 207-225.10.1016/0025-5564(76)90080-8Search in Google Scholar

Freedman, H.I. (1980). Deterministic Mathematical Models inPopulation Ecologys, Marcel Dekker, New York, NY.Search in Google Scholar

Grebogi, C., Ott, E. and Yorke, J.A. (1983). Crises, sudden changes in chaotic attractors, and transient chaos, PhysicaD: Nonlinear Phenomena 7(1-3): 181-200.10.1016/0167-2789(83)90126-4Search in Google Scholar

Grebogi, C., Ott, E. and Yorke, J.A. (1986). Critical exponent of chaotic transients in nonlinear dynamical systems, PhysicalReview Letters 57(11): 1284-1287. 10.1103/PhysRevLett.57.128410033406Search in Google Scholar

Grebogi, C., Ott, E., Romeiras, F. and Yorke, J.A. (1987). Critical exponents for crisis-induced intermittency, PhysicalReview A 36(11): 5365-5380.10.1103/PhysRevA.36.53659898807Search in Google Scholar

Guckenheimer, J. and Holmes, P. (1983). Nonlinear Oscillations,Dynamical Systems, and Bifurcations of VectorFields, Springer-Verlag, New York, NY.10.1007/978-1-4612-1140-2Search in Google Scholar

Hainzl, J. (1988). Stability and Hopf bifurcation in a predator-prey system with several parameters, SIAM Journalon Applied Mathematics 48(1): 170-190.10.1137/0148008Search in Google Scholar

Harrison, G.W. (1986). Multiple stable equilibria in a predator-prey system, Bulletin of Mathematical Biology48(2): 137-148.10.1016/S0092-8240(86)80003-9Search in Google Scholar

He, Z. and Lai, X. (2011). Bifurcation and chaotic behavior of a discrete-time predator-prey system, Nonlinear Analysis:Real World Applications 12(1): 403-417.10.1016/j.nonrwa.2010.06.026Search in Google Scholar

Holling, C.S. (1965). The functional response of predators to prey density and its role in mimicry and population regulation, Memoirs of the Entomological Society ofCanada 97(45): 1-60.10.4039/entm9745fvSearch in Google Scholar

Hsu, S.B. (1978). The application of the Poincare-transform to the Lotka-Volterra model, Journal of Mathematical Biology6(1): 67-73.10.1007/BF02478518Search in Google Scholar

Hu, Z., Teng, Z. and Zhang, L. (2011). Stability and bifurcation analysis of a discrete predator-prey model with nonmonotonic functional response, Nonlinear Analysis:Real World Applications 12(4): 2356-2377.10.1016/j.nonrwa.2011.02.009Search in Google Scholar

Huang, J. and Xiao, D. (2004). Analyses of bifurcations and stability in a predator-prey system with Holling type-IV functional response, Acta Mathematicae Applicatae Sinica20(1): 167-178.10.1007/s10255-004-0159-xSearch in Google Scholar

Jing, Z. (1989). Local and global bifurcations and applications in a predator-prey system with several parameters, SystemsScience and Mathematical Sciences 2(4): 337-352.Search in Google Scholar

Jing, Z. , Chang, Y. and Guo, B. (2004). Bifurcation and chaos in discrete FitzHugh-Nagumo system, Chaos, Solitons &Fractals 21(3): 701-720.10.1016/j.chaos.2003.12.043Search in Google Scholar

Jing, Z. and Yang, J. (2006). Bifurcation and chaos in discrete-time predator-prey system, Chaos, Solitons &Fractals 27(1): 259-277.10.1016/j.chaos.2005.03.040Search in Google Scholar

Kazarinoff, N.D. and Van Den Driessche, P. (1978). A model predator-prey system with functional response, MathematicalBiosciences 39(1-2): 125-134.10.1016/0025-5564(78)90031-7Search in Google Scholar

Kuznetsov, Y.A. (1998). Elements of Applied Bifurcation Theory, Springer-Verlag, Berlin.Search in Google Scholar

Liu, X. and Xiao, D. (2007). Complex dynamic behaviors of a discrete-time predator-prey system, Chaos, Solitons &Fractals 32(1): 80-94.10.1016/j.chaos.2005.10.081Search in Google Scholar

Liu, W., Li, D. and Yao, T. (2010). Qualitative analysis of Holling IV predator-prey system with double density retrie, Natural Sciences Journal of Harbin Normal University26(6): 8-12, (in Chinese).Search in Google Scholar

Ott, E., Grebogi, C. and Yorke, J.A. (1990). Controlling chaos, Physical Review Letters 64(11): 1196-1199.10.1103/PhysRevLett.64.119610041332Search in Google Scholar

Raja, R., Sakthivel, R., Anthoni, S.M. and Kim, H. (2011). Stability of impulsive Hopfield neural networks with Markovian switching and time-varying delays, InternationalJournal of Applied Mathematics and Computer Science21(1): 127-135, DOI: 10.2478/v10006-011-0009-y.10.2478/v10006-011-0009-ySearch in Google Scholar

Robinson, C. (1999). Dynamical Systems, Stability, SymbolicDynamics and Chaos, 2nd Edn., CRC Press, Boca Raton, FL/London/New York, NY/Washington, DC.Search in Google Scholar

Ruan, S. and Xiao, D. (2001). Global analysis in a predator-prey system with nonmonotonic functional response, SIAMJournal on Applied Mathematics 61(4): 1445-1472.10.1137/S0036139999361896Search in Google Scholar

Scholl, E. and Schuster, H.G. (2008). Handbook of Chaos Control, Wiley-VCH, Weinheim.Search in Google Scholar

Tong, Y., Liu, Z. and Wang, Y. (2012). Existence of period solutions for a predator-prey system with sparse effect and functional response on time scales, Communicationsin Nonlinear Science and Numerical Simulation17(8): 3360-3366.10.1016/j.cnsns.2011.12.003Search in Google Scholar

Wang, Y., Jing, Z. and Chan, K. (1999). Multiple limit cycles and global stability in predator-prey model, Acta MathematicaeApplicatae Sinica 15(2): 206-219.10.1007/BF02720497Search in Google Scholar

Wiggins, S. (1990). Introduction to Applied Nonlinear DynamicalSystems and Chaos, Springer-Verlag, Berlin.10.1007/978-1-4757-4067-7Search in Google Scholar

Wolkowicz, G.S.K. (1988). Bifurcation analysis of a predator-prey system involving group defence, SIAM Journalon Applied Mathematics 48(3): 592-606.10.1137/0148033Search in Google Scholar

Xu, C., Liao, M. and He, X. (2011). Stability and Hopf bifurcation analysis for a Lotka-Volterra predator-prey model with two delays, International Journal of AppliedMathematics and Computer Science 21(1): 97-107, DOI: 10.2478/v10006-011-0007-0.10.2478/v10006-011-0007-0Search in Google Scholar

Zhang, Q., Yang, L. and Liao, D. (2011). Existence and exponential stability of a periodic solution for fuzzy cellar neural networks with time-varying delays, InternationalJournal of Applied Mathematics and Computer Science21(4): 649-658, DOI: 10.2478/v10006-011-0051-9.10.2478/v10006-011-0051-9Search in Google Scholar

eISSN:
2083-8492
ISSN:
1641-876X
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Mathematics, Applied Mathematics