Otwarty dostęp

Application of Convolutional Gated Recurrent Units U-Net for Distinguishing between Retinitis Pigmentosa and Cone–Rod Dystrophy


Zacytuj

Abeysinghe A, Tohmuang S, Davy J L, Fard M. Data augmentation on convolutional neural networks to classify mechanical noise. Appl. Acoust. 2023:203:109209. Search in Google Scholar

Alomar K, Aysel H I, Cai X. Data augmentation in classification and segmentation: A survey and new strategies. J. Imaging. 2023; 9(2): 46. Search in Google Scholar

Azad R, Asadi-Aghbolaghi M, Fathy M, Escalera S. Bi-directional ConvLSTM U-Net with densley connected convolutions. 2019. Proc - IEEE/CVF international conference on computer vision workshops. Search in Google Scholar

Baratloo A, Hosseini M, Negida A, El Ashal, G. Part 1: Simple definition and calculation of accuracy, sensitivity and specificity. Emergency. 2015;3(2):48-49. Search in Google Scholar

Berger W, Kloeckener-Gruissem B, Neidhardt J. The molecular basis of human retinal and vitreoretinal diseases. Prog Retin Eye Res. 2010;29(5):335–75. Search in Google Scholar

Bonnici E, Arn P. The impact of Data Augmentation on classification accuracy and training time in Handwritten Character Recognition. Kth Royal Institute of Technology. 2021. Search in Google Scholar

Brancati N, Frucci M, Gragnaniello D, Riccio D, Di Iorio V, Di Perna L. Automatic segmentation of pigment deposits in retinal fundus images of Retinitis Pigmentosa. Comput. Med. Imag. Graph. 2018;66:73-81. Search in Google Scholar

Brancati N, Frucci M, Gragnaniello D, Riccio D, Di Iorio V, Di Perna L, Simonelli F. Learning-based approach to segment pigment signs in fundus images for retinitis pigmentosa analysis. Neurocomputing. 2018,308:159-171. Search in Google Scholar

Chen JX, Jiang DM, Zhang YN, A hierarchical bidirectional GRU model with attention for EEG-based emotion classification, IEEE Access. 2019;7:118530-118540. Search in Google Scholar

Das H, Saha A, Deb S. An expert system to distinguish a defective eye from a normal eye. Proc - 2014 International Conference on Issues and Challenges in Intelligent Computing Techniques (ICICT). IEEE. 2014:155-158. Search in Google Scholar

Fahim AT, Daiger SP, Weleber RG. Nonsyndromic retinitis pigmentosa overview. 2017: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, Amemiya A, eds. Gene Reviews. Seattle: University of Washington. Search in Google Scholar

Gill JS, Georgiou M, Kalitzeos A, Moore AT, Michaelides M. Progressive cone and cone-rod dystrophies: Clinical features, molecular genetics and prospects for therapy. Br. J. Ophthalmol. 2019;103(5): 711-720. Search in Google Scholar

Graves A, Mohamed AR, Hinton G. Speech recognition with deep recurrent neural networks. Proc - IEEE Int. Conf. Acoust., Speech Signal Process. 2013;38:6645–6649. Search in Google Scholar

Guo C, Yu M, Li J. Prediction of different eye diseases based on fundus photography via deep transfer learning. J. Clin. Med. 2021;10(23):5481. Search in Google Scholar

Huang G, Liu Z, Van Der Maaten L, Weinberger KQ. Densely connected convolutional networks. Proc - IEEE conference on computer vision and pattern recognition. 2017:4700-4708. Search in Google Scholar

Hartong DT, Berson EL, Dryja TP. Retinitis pigmentosa. Lancet. 200618;368(9549):1795-809. doi: 10.1016/S0140-6736(06)69740-7 Search in Google Scholar

Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. Proc - International conference on machine learning. 2015:448-456. Search in Google Scholar

Jain L, Murthy H S, Patel C, Bansal D. Retinal eye disease detection using deep learning. Proc - Fourteenth International Conference on Information Processing (ICINPRO). IEEE. 2018:1-6. Search in Google Scholar

LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436-444. Search in Google Scholar

Liu T Y A, Ling C, Hahn L, Jones C K, Boon C J, Singh M S. Prediction of visual impairment in retinitis pigmentosa using deep learning and multimodal fundus images. Br. J. Ophthalmol. 2022. Search in Google Scholar

Masumot H, Tabuchi H, Nakakura S, Ohsugi H, Enno H, Ishitobi, N., Ohsugi E, Mitamura Y. Accuracy of a deep convolutional neural network in detection of retinitis pigmentosa on ultrawide-field images. PeerJ. 2019;7:e6900. Search in Google Scholar

Merin S, Auerbach E. Retinitis pigmentosa. Surv. of Ophthalmol. 1976; 20(5):303-46. doi: 10.1016/s0039-6257(96)90001-6 Search in Google Scholar

Monaghan T F, Rahman S N, Agudelo C W, Wein A J, Lazar J M, Everaert K, Dmochowski R R. Foundational statistical principles in medical research: sensitivity, specificity, positive predictive value, and negative predictive value. Medicina. 2021;57(5):503. Search in Google Scholar

Oishi A, Miyata M, Numa S, Otsuka Y, Oishi M, Tsujikawa A. Wide-field fundus autofluorescence imaging in patients with hereditary retinal degeneration: a literature review. Int. J. of Retina Vitr. 2019;12(5) (Suppl 1):23. https://doi.org/10.1186/s40942-019-0173-z. Search in Google Scholar

Piri N, Grodsky JD, Kaplan HJ. Gene therapy for retinitis pigmentosa. Taiwan J. Ophthalmol. 2021;11(4):348-351. Search in Google Scholar

RetNet Retinal Information Network. https://sph.uth.edu/retnet/ [6.06.2023] Search in Google Scholar

Robson AG, Egan CA, Luong VA, Bird AC, Holder GE, Fitzke FW. Comparison of FAF with photopic and scotopic fine-matrix mapping in patients with retinitis pigmentosa and normal visual acuity. Invest. Ophthalmol. Vis. Sci. 2004;45(11):4119-4125. Search in Google Scholar

Romo-Bucheli D, Erfurth U S, Bogunović, H. End-to-end deep learning model for predicting treatment requirements in neovascular AMD from longitudinal retinal OCT imaging. IEEE J. Biomed. Health Inform. 2020;24(12):3456-3465. Search in Google Scholar

Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. Proc - 18th International Conference, Munich, Germany. October 5-9. Proceedings. Part III. 2015; 18:234-241. Springer International Publishing. Search in Google Scholar

Schmitz-Valckenberg S, Holz FG, Bird AC, Spaide RF. Fundus autofluorescence imaging: review and perspectives. Retina. 2008;28(3):385-409. Search in Google Scholar

Shi X, Chen Z, Wang H, Yeung DY, Wong WK, Woo WC. Convolutional LSTM network: A machine learning approach for precipitation nowcasting. Adv. Neural. Inf. Process. Syst. 2015;28. Search in Google Scholar

Shorten C, Khoshgoftaar T M. A survey on image data augmentation for deep learning. J. Big Data. 2019;6(1):1-48. Search in Google Scholar

Skublewska-Paszkowska M, Powroznik P. Temporal Pattern Attention for Multivariate Time Series of Tennis Strokes Classification. Sensors. 2023;23(5):2422. Search in Google Scholar

Song H, Wang W, Zhao S, Shen J, Lam KM. Pyramid dilated deeper convlstm for video salient object detection. Proc - European conference on computer vision (ECCV). 2018:715-731. Search in Google Scholar

Sun G, Wang X. Xu L. Li C. Wang W. Yi, Z., Luo H, Su Y, Zheng J, Li Z, Chen Z, Zheng H, Chen, C. Deep learning for the detection of multiple fundus diseases using ultra-widefield images. Ophthalmol. Ther. 2023;12(2):895-907. https://doi.org/10.1007/s40123-022-00627-3 Search in Google Scholar

Tee JJ, Smith AJ, Hardcastle AJ, Michaelides M. RPGR-associated retinopathy: clinical features, molecular genetics, animal models and therapeutic options. Br J Ophthalmolol. 2016;100(8):1022-7. doi: 10.1136/bjophthalmol-2015-307698 Search in Google Scholar

Wong S C, Gatt A, Stamatescu V, McDonnell M D. Understanding data augmentation for classification: when to warp? Proc - International conference on digital image computing: techniques and applications. IEEE. 2016:1-6. Search in Google Scholar

Yang S, Xiao W, Zhang M, Guo S, Zhao J, Shen F. Image data augmentation for deep learning: A survey. 2022. arXiv preprint arXiv:2204.08610. Search in Google Scholar