Otwarty dostęp

Method for Enhanced Accuracy in Machining Free-Form Surfaces on CNC Milling Machines


Zacytuj

1. Ramesh R, Mannan MA, Poo AN. Error compensation in machine tools - a review. Part I: geometric, cutting-force induced and fixture dependent errors. Int J Mach Tool Manu. 2000; 40: 1235–1256.10.1016/S0890-6955(00)00009-2 Search in Google Scholar

2. Ramesh R, Mannan MA, Poo AN. Error compensation in machine tools - a review. Part II: thermal errors. Int J Mach Tool Manu. 2000; 40: 1257–1284.10.1016/S0890-6955(00)00010-9 Search in Google Scholar

3. Wenjie T, Weiguo G, Dawei Z, et al. A general approach for error modeling of machine tools. Int J Mach Tool Manu. 2014; 79: 17–23.10.1016/j.ijmachtools.2014.01.003 Search in Google Scholar

4. Zuriani U, Ahmed A, Sarhan, Mardi NA, et al. Measuring of positioning, circularity and static errors of a CNC Vertical Machining Centre for validating the machining accuracy. Measurement. 2015; 61: 39–50.10.1016/j.measurement.2014.10.025 Search in Google Scholar

5. Zhouxiang J, Bao S, Xiangdong Z et al. On-machine measurement of location errors on five-axis machine tools by machining tests and a laser displacement sensor. Int J Mach Tool Manu. 2015; 95: 1–12.10.1016/j.ijmachtools.2015.05.004 Search in Google Scholar

6. Ibaraki S, Sawada M, Matsubara A, et al. Machining tests to identify kinematic errors on five-axis machine tools. Prec Eng. 2010; 34: 387–398.10.1016/j.precisioneng.2009.09.007 Search in Google Scholar

7. Zhengchun Du, Shujie Zhang, Maisheng H. Development of a multi-step measuring method for motion accuracy of NC machine tools based on cross grid encoder. Int J Mach Tool Manu. 2010; 50: 270–280.10.1016/j.ijmachtools.2009.11.010 Search in Google Scholar

8. Vahebi Nojedeh M, Habibi M, Arezoo B. Tool path accuracy enhancement through geometrical error compensation. Int J Mach Tool Manu. 2011; 51:471–482.10.1016/j.ijmachtools.2011.02.005 Search in Google Scholar

9. Xiaoyan Z, Beizhi L, Jianguo Y, et al. Integrated geometric error compensation of machining processes on CNC machine tool. Procedia CIRP. 2013; 8: 135–140.10.1016/j.procir.2013.06.078 Search in Google Scholar

10. Lasemi A, Xue D, Gu P. Accurate identification and compensation of geometric errors of 5-axis CNC machine tools using double ball bar. Measurement Science and Technology. 2016; 27 (5): 055004.10.1088/0957-0233/27/5/055004 Search in Google Scholar

11. Zhang X, Zhang J, Zheng X, Pang B, Zhao W. Tool orientation optimization of 5-axis ball-end milling based on an accurate cutter/workpiece engagement model. CIRP Journal of Manufacturing Science and Technology. 2017; 19: 106-116.10.1016/j.cirpj.2017.06.003 Search in Google Scholar

12. Kim YJ, Elber G, Barton M, Pottmann H. Precise gouging-free tool orientations for 5-axis CNC machining. Computer-Aided Design. 2015; 58: 220-229.10.1016/j.cad.2014.08.010 Search in Google Scholar

13. Barton M, Bizzarri M, Rist F, Sliusarenko O, Pottmann H. Geometry and tool motion planning for curvature adapted CNC machining. ACM Transactions on Graphics. 2021 Aug; 40 (4): 1–16. https://doi.org/10.1145/3450626.345983710.1145/3450626.3459837 Search in Google Scholar

14. Hansel A, Yamazaki K, Konishi K. Improving CNC machine tool geometric precision using manufacturing process analysis techniques. Procedia CIRP. 2014; 14: 263–268.10.1016/j.procir.2014.03.111 Search in Google Scholar

15. Habibi M, Arezoo B, Vahebi Nojedeh M. Tool deflection and geometrical error compensation by tool path modification, Int J Mach Tool Manu. 2011: 51: 439–449.10.1016/j.ijmachtools.2011.01.009 Search in Google Scholar

16. Ryu SH, Chu CN. The form error reduction in side wall machining using successive down and up milling. Int J Mach Tool Manu. 2005; 45: 1523–1530.10.1016/j.ijmachtools.2005.01.027 Search in Google Scholar

17. Yang MY, Choi JG. A tool deflection compensation system for end milling accuracy improvement. J Manuf Sci Eng. 1998; 120: 222–229.10.1115/1.2830117 Search in Google Scholar

18. Landon Y, Segonds S, Mousseigne M, et al. Correction of milling tool paths by tool positioning defect compensation. Proc Inst Mec. Eng B. 2003; 217: 1063–1073.10.1177/095440540321700804 Search in Google Scholar

19. Myeong-Woo Cho, Tae-il Seo, Hyuk-Dong Kwon. Integrated error compensation method using OMM system for profile milling operations. J Mater Process Techol. 2003; 136: 88–99.10.1016/S0924-0136(02)00943-3 Search in Google Scholar

20. Poniatowska M, Werner A. Fitting spatial models of geometric deviations of free-form surfaces determined in coordinate measurements. Metrol Meas Syst. 2010; 17: 599–610.10.2478/v10178-010-0049-x Search in Google Scholar

21. Poniatowska M, Werner A. Simulation tests of the method for determining a CAD model of free-form surface deterministic deviations. Metrol Meas Syst. 2012; 19: 151-158.10.2478/v10178-012-0014-y Search in Google Scholar

22. Poniatowska M. Free-form surface machining error compensation applying 3D CAD machining pattern model. Comput Aided Design. 2015; 62: 227–235.10.1016/j.cad.2014.12.003 Search in Google Scholar

23. Werner A, Skalski K, Piszczatowski S, et al. Reverse engineering of free-form surfaces. J Mater Process Technol. 1998; 76: 128-132.10.1016/S0924-0136(97)00340-3 Search in Google Scholar

24. Kawasaki T, Jayaraman PK, Shida K, et al. An image processing approach to feature-preserving B-spline surface fairing. Comput Aided Design. 2018; 99: 1–10.10.1016/j.cad.2018.01.003 Search in Google Scholar

25. Wang Z, Wang H. Image smoothing with generalized random walks: Algorithm and applications. Appl Soft Comput 2016; 46: 792–804.10.1016/j.asoc.2016.01.003 Search in Google Scholar