1. bookTom 14 (2020): Zeszyt 3 (September 2020)
Informacje o czasopiśmie
Format
Czasopismo
eISSN
2300-5319
Pierwsze wydanie
22 Jan 2014
Częstotliwość wydawania
4 razy w roku
Języki
Angielski
Otwarty dostęp

On Grünwlad-Letinkov Fractional Operator with Measurable Order on Continuous-Discrete Time Scale

Data publikacji: 20 Nov 2020
Tom & Zeszyt: Tom 14 (2020) - Zeszyt 3 (September 2020)
Zakres stron: 161 - 165
Otrzymano: 07 May 2020
Przyjęty: 17 Nov 2020
Informacje o czasopiśmie
Format
Czasopismo
eISSN
2300-5319
Pierwsze wydanie
22 Jan 2014
Częstotliwość wydawania
4 razy w roku
Języki
Angielski

1. Alagoz B.B., Tepljakov A., Ates A. (2019) Time-domain identification of one noninteger order plus time delay models from step response measurements, International Journal of Modeling, Simulation and Scientific Computing, Vol. 10, No. 1, 1941011-1–1941011-22.Search in Google Scholar

2. Alagz B.B., Alisoy H. (2018) Estimation of reduced order equivalent circuit model parametres of batteries from noisy current and voltage measurements, Balkan Journal of Electrical & Computer Engineering, Vol. 6, No. 4, 224–231.Search in Google Scholar

3. Balaska H., Ladaci S., Djouambi A., Schulte H., Bourouba B. (2020) Fractional order tube model reference adaptive control for a class of fractional order linear systems International Journal of Applied Mathematics and Computer Science,, Vol. 30, No. 3, 501–515Search in Google Scholar

4. Bohner M., Petrson A. (2002) Dynamic Equations on Time Scales: A survey, Journal of Computational and Applied Mathematics, Vol. 141, No. 1–2, 1–26.Search in Google Scholar

5. Buslowicz M. Nartowicz T. (2009) Design of fractional order controller for a class of plants with delay, Measurement Automation and Robotics, Vol. 2, 398–405.Search in Google Scholar

6. Coimbra C.,(2003), Mechanics with variable-order differential operators, Annual Physics, Vol. 12, 692-703.Search in Google Scholar

7. Djennoune S., Bettayeb M., Al-Saggaf U.M. (2019) Synchronization of fractional order discrete-time chaotic systems by exact state reconstructor: application to secure communication, International Journal of Applied Mathematics and Computer Science, Vol. 29, No. 1, 179–194.Search in Google Scholar

8. Janczak J., Kondratiuk M., Pawluszewicz E. (2016) Testing of adaptive non-uniform sampling switch algorithm with real-time simulation-in-the-loop, Control and Cybernetics, Vol. 45, No. 3, 317–328.Search in Google Scholar

9. Kavuran G., Yeroğlu C., Ates A. Alagoz B.B. (2017) Effects of fractional order integration on ASDM signals, Int. J. Dynam. Control Vol. 5, 10–17Search in Google Scholar

10. Kondratiuk M., Ambroziak L., Pawluszewicz E, Janczak J. (2018) Discrete PID algorithm with non-uniform sampling Practical implementation in control system, AIP Conference Proceedings 2029, 020029, doi: 10.1063/1.5066491.10.1063/1.5066491Search in Google Scholar

11. Koszewnik A., Ostaszewski M., Pawłuszewicz E., Radgowski P. (2018) Performance Assessment of the Tilt Fractional Order Integral Derivative Regulator for Control Flow Rate in Festo MPSR©PA Compact Workstation, Proceedings of 23rd International Conference on Methods and Models in Automation and Robotics, Poland.10.1109/MMAR.2018.8486080Search in Google Scholar

12. Koszewnik A., Pawluszewicz E., Nartowicz T., (2016), Fractional order controller to control pomp in Festo MPS® PA Compact Workstation, Proceedings of the 17th International Carpathian Control Conference (ICCC 2016), 364–367.10.1109/CarpathianCC.2016.7501124Search in Google Scholar

13. Lorenzo C.F., Hartley T.T. (2002) Variable order and distributed order fractional operators, Nonlinear Dynamics, Vol. 29, 57–98.Search in Google Scholar

14. Ortigueira M., Torres D.M.F., Trujillo J. (2016) Exponents and Laplace transforms on non-uniform time scale, Communications in Nonlinear Science and Numerical Simulations, Vol. 39, 252–270.Search in Google Scholar

15. Ortigueira M.D. (1997) Fractional discrete-time linear systems, Proceedings of the EEICASSP, Munich, Germany, IEEE New York, Vol. 3, 2241–2244.Search in Google Scholar

16. Ostalczyk P. (2012) Variable-fractional-order discrete PID controller, IEEE Proceedings of the 17th International Conference on Methods and Models in Automation and Robotics, MMAR 2012, Miedzyzdroje, Poland, 534–539.10.1109/MMAR.2012.6347829Search in Google Scholar

17. Ostalczyk P., Duch P. Brzezinski D.W., Sankowski D. (2015) Order functions selection in the variable-, fractional-order PID controller in: Advances in modelling and control of non-integer-order systems, Eds. Latawiec K.J., Lukaniszyn M., Stanislawski R., 159–170.Search in Google Scholar

18. Patniak S., Hollkamp J.P., Semperlotti A. (2002) Applications of variable-order fractional operators: a review, Proceedings of the Royal Society A, 476, 1–32.Search in Google Scholar

19. Pawluszewicz E., Koszewnik A., (2019), Markov parameters of the input-output map for discrete-time order systems with Grünwlad-Letnikov h-difference operator, Proceedings of the 24th International Conference on Methods and Models in Automation and Robotics (MMAR), 456–459.10.1109/MMAR.2019.8864668Search in Google Scholar

20. Podlubny, I., Dorcak, L., Misanek, J. (1995) Application of fractional order derivatives to calculation of heat load intensity change in blast furnace walls, Transactions of Technical University of Kosice, Vol. 5, 137–144.Search in Google Scholar

21. Samko S.G., Ross B. (1993) Integration and differentiation to a variable fractional order, Journal Integral Transforms and Special Functions, Vol. 1, No. 4, 277–300.Search in Google Scholar

22. Sierociuk D., Macias M. (2013) Comparison of variable fractional order PID controller for different types of variable order derivatives, Proceedings of the 14th International Carpathian Control Conference ICCC 2013, Rytro, Poland, 334–339.10.1109/CarpathianCC.2013.6560565Search in Google Scholar

23. Sierociuk D., Malesza W., Macias M. (2013) On a new definition of fractional variable-order derivative, Proceedings of the 14th International Carpathian Control Conference ICCC 2013, Rytro, Poland, 339–345.10.1109/CarpathianCC.2013.6560566Search in Google Scholar

24. Sierociuk D., Malesza W., Macias M. (2015) Deviation, interpolation and analog modelling of fractional variable order derivative definitions, Applied Mathematics and Modelling, Vol. 39, 3876–3888.Search in Google Scholar

25. Stanislawski R., Latawiec K. (2012) Normalized finite fractional differences: computational and accuracy breakthrough, International Journal of Applied Mathematics and Computer Science, Vol. 22, No. 4, 907–919.Search in Google Scholar

26. Tepljakov A. (2017) Fractional-order modeling and control of dynamic systems, Springer-Verlag.10.1007/978-3-319-52950-9Search in Google Scholar

27. Tepljakov A., Alagoz B.B. et al. (2018) FOPID controllers and their industrial applications: a survey of recent results, IFAC Papers On Line 51-4, 25–30.10.1016/j.ifacol.2018.06.014Search in Google Scholar

28. Tepljakov A., Petlekov E., Belikov J. (2012) A flexible Matlab tool for optimal fractional-order PID controller design subject to specifications, Proceedings of the 31st Chinese Control Conference, 4698–4703.Search in Google Scholar

29. Valerio D., Sa da Costa J. (2001) Variable-order fractional derivatives and their numerical approximations, Signal Processing, Vol. 91, 470–483.Search in Google Scholar

30. Wang J.C. (1987) Realizations of generalized Warburg impedance with RC ladder networks and transmission lines, Journal of Electro-chemical Society, Vol. 134, No. 8, 1915–1920.Search in Google Scholar

Polecane artykuły z Trend MD

Zaplanuj zdalną konferencję ze Sciendo