1. bookTom 14 (2020): Zeszyt 3 (September 2020)
Informacje o czasopiśmie
Format
Czasopismo
eISSN
2300-5319
Pierwsze wydanie
22 Jan 2014
Częstotliwość wydawania
4 razy w roku
Języki
Angielski
Otwarty dostęp

Temperature Variation Effect on the Active Vibration Control of Smart Composite Beam

Data publikacji: 20 Nov 2020
Tom & Zeszyt: Tom 14 (2020) - Zeszyt 3 (September 2020)
Zakres stron: 166 - 174
Otrzymano: 14 Jan 2020
Przyjęty: 19 Nov 2020
Informacje o czasopiśmie
Format
Czasopismo
eISSN
2300-5319
Pierwsze wydanie
22 Jan 2014
Częstotliwość wydawania
4 razy w roku
Języki
Angielski

1. Bansal A., Ramaswamy A. (2002), FE analysis of piezo-laminate composites under thermal loads, J. Intell. Mater. Syst. Struct., 13, 291–301.Search in Google Scholar

2. Beheshti-Aval S.B., Lezgy-Nazargah M., Vidal P., Polit O. (2011), A Refined Sinus Finite Element Model for the Analysis of Piezoelectric-Laminated Beams, A Refined Sinus Finite Element Model for the Analysis of Piezoelectric-Laminated Beams, J. Intell. Mater. Syst. Struct., 22, 203–219, https://doi.org/10.1177/1045389X10396955.10.1177/1045389X10396955Search in Google Scholar

3. Bendine K., Boukhoulda F.B., Nouari M., Satla Z. (2016), Active vibration control of functionally graded beams with piezoelectric layers based on higher order shear deformation theory, Earthq. Eng. Eng. Vib., 15, 611–620.Search in Google Scholar

4. Benjeddou A., Andrianarison O. (2005), A thermopiezoelectric mixed variational theorem for smart multilayered composites, Comput. Struct., 83, 1266–1276.Search in Google Scholar

5. Birman V. (1996), Thermal effects on measurements of dynamic processes in composite structures using piezoelectric sensors, Smart Mater. Struct., 5, 379, https://doi.org/10.1088/0964-1726/5/4/001.10.1088/0964-1726/5/4/001Search in Google Scholar

6. Chandrashekhara K., Tenneti R. (1995), Thermally induced vibration suppression of laminated plates with piezoelectric sensors and actuators, Smart Mater. Struct., 4, 281. https://doi.org/10.1088/0964-1726/4/4/008.10.1088/0964-1726/4/4/008Search in Google Scholar

7. Chattopadhyay A., Li J., Gu H. (1999), Coupled Thermo-Piezoelectric-Mechanical Model for Smart Composite Laminates, AIAA J., 37, 1633–1638, https://doi.org/10.2514/2.645.10.2514/2.645Search in Google Scholar

8. Clark W.W. (1999), Semi-active vibration control with piezoelectric materials as variable-stiffness actuators, Smart Structures and Materials: Passive Damping and Isolation, International Society for Optics and Photonics, 123–130.10.1117/12.349775Search in Google Scholar

9. Crawley E.F., De Luis J. (1987), Use of piezoelectric actuators as elements of intelligent structures, AIAA J., 25, 1373–1385.Search in Google Scholar

10. Elshafei M.A., Alraiess F. (2013), Modeling and analysis of smart piezoelectric beams using simple higher order shear deformation theory, Smart Mater. Struct., 22, 035006.Search in Google Scholar

11. Gay D., Hoa S.V. (2007), Composite Materials : Design and Applications, Second Edition, CRC Press.10.1201/9781420045208Search in Google Scholar

12. Gupta V., Sharma M., Thakur N., Singh S.P. (2011), Active vibration control of a smart plate using a piezoelectric sensor–actuator pair at elevated temperatures, Smart Mater. Struct., 20, 105023. https://doi.org/10.1088/0964-1726/13/1/004https://doi.org/10.1115/1.3167719https://doi.org/10.1201/9781420045208Search in Google Scholar

13. Jiang J.P., Li D.X. (2007), A new finite element model for piezothermoelastic composite beam, J. Sound Vib., 306, 849–864.Search in Google Scholar

14. Johnson C.D. (1995), Design of Passive Damping Systems, J. Mech. Des., 117, 171–176, https://doi.org/10.1115/1.2836451.10.1115/1.2836451Search in Google Scholar

15. Kargarnovin M.H., Najafizadeh M.M., Viliani N.S. (2007), Vibration control of a functionally graded material plate patched with piezoelectric actuators and sensors under a constant electric charge, Smart Mater. Struct., 16, 1252.Search in Google Scholar

16. Lam K.Y., Peng X.Q., Liu G.R., Reddy J.N. (1997), A finite-element model for piezoelectric composite laminates, Smart Mater. Struct., 6, 583.Search in Google Scholar

17. Lee H.-J., Saravanos D.A. (1996), Coupled layerwise analysis of thermopiezoelectric composite beams, AIAA J., 34, 1231–1237.Search in Google Scholar

18. Lee H.-J., Saravanos D.A. (1998), The effect of temperature dependent material properties on the response of piezoelectric composite materials, J. Intell. Mater. Syst. Struct., 9, 503–508.Search in Google Scholar

19. Liew K.M., He X.Q., Ng T.Y., Sivashanker S. (2001), Active control of FGM plates subjected to a temperature gradient: modelling via finite element method based on FSDT, Int. J. Numer. Methods Eng., 52, 1253–1271.Search in Google Scholar

20. Peng X.Q., Lam K.Y., Liu G.R. (1998), Active vibration control of composite beams with piezoelectrics: a finite element model with third order theory., J. Sound Vib., 209, 635–650.10.1006/jsvi.1997.1249Search in Google Scholar

21. Qiu J., Ji H., Zhu K. (2009), Semi-active vibration control using piezoelectric actuators in smart structures, Front. Mech. Eng. China, 4, 242–251.Search in Google Scholar

22. Raja S., Sinha P.K., Prathap G., Dwarakanathan D. (2004), Thermally induced vibration control of composite plates and shells with piezoelectric active damping, Smart Mater. Struct., 13, 939.Search in Google Scholar

23. Reddy J.N. (1984), A Simple Higher-Order Theory for Laminated Composite Plates, J. Appl. Mech., 51, 745–752.Search in Google Scholar

24. Sharma A., Kumar R., Vaish R., Chauhan V.S. (2016), Experimental and numerical investigation of active vibration control over wide range of operating temperature, J. Intell. Mater. Syst. Struct., 27, 1846–1860.Search in Google Scholar

25. Song, G., Zhou, X., Binienda, W. (2004), Thermal deformation compensation of a composite beam using piezoelectric actuators, Smart Mater. Struct., 13, 30.Search in Google Scholar

26. Tzou H.S., Bao Y. (1995), A theory on anisotropic piezothermoelastic shell laminates with sensor/actuator applications, J. Sound Vib., 184, 453–473.Search in Google Scholar

27. Tzou H.S., Gadre M. (1989), Theoretical analysis of a multi-layered thin shell coupled with piezoelectric shell actuators for distributed vibration controls, J. Sound Vib., 132, 433–450.Search in Google Scholar

28. Tzou H.S., Tseng C.I. (1990), Distributed piezoelectric sensor/actuator design for dynamic measurement/control of distributed parameter systems: a piezoelectric finite element approach, J. Sound Vib., 138, 17–34.Search in Google Scholar

29. Wang D., Fotinich Y., Carman G.P. (1998), Influence of temperature on the electromechanical and fatigue behavior of piezoelectric ceramics, J. Appl. Phys., 83, 5342, https://doi.org/10.1063/1.367362.10.1063/1.367362Search in Google Scholar

30. Ye Z.-G. (2008), Handbook of advanced dielectric, piezoelectric and ferroelectric materials: Synthesis, properties and applications, Elsevier.10.1201/9781439832882Search in Google Scholar

31. Zhou X., Chattopadhyay A., Gu H. (2000), Dynamic responses of smart composites using a coupled thermo-piezoelectric-mechanical model, AIAA J., 38, 1939–1948.Search in Google Scholar

32. Zorić N.D., Simonović A.M., Mitrović Z.S., Stupar S.N. (2013), Optimal vibration control of smart composite beams with optimal size and location of piezoelectric sensing and actuation, J. Intell. Mater. Syst. Struct., 24, 499–526.Search in Google Scholar

33. Zou Y., Tong L., Steven G.P. (2000), Vibration-based model-dependent damage (delamination) identification and health monitoring for composite structures — a review, J. Sound Vib., 230, 357–378, https://doi.org/10.1006/jsvi.1999.2624.10.1006/jsvi.1999.2624Search in Google Scholar

Polecane artykuły z Trend MD

Zaplanuj zdalną konferencję ze Sciendo