1. bookTom 14 (2020): Zeszyt 3 (September 2020)
Informacje o czasopiśmie
Format
Czasopismo
eISSN
2300-5319
Pierwsze wydanie
22 Jan 2014
Częstotliwość wydawania
4 razy w roku
Języki
Angielski
Otwarty dostęp

Effect of Kerr Foundation and in-Plane Forces on Free Vibration of FGM Nanobeams with Diverse Distribution of Porosity

Data publikacji: 20 Nov 2020
Tom & Zeszyt: Tom 14 (2020) - Zeszyt 3 (September 2020)
Zakres stron: 135 - 143
Otrzymano: 19 Jun 2020
Przyjęty: 23 Oct 2020
Informacje o czasopiśmie
Format
Czasopismo
eISSN
2300-5319
Pierwsze wydanie
22 Jan 2014
Częstotliwość wydawania
4 razy w roku
Języki
Angielski

1. Ashoori A.R, Salari E., Sadough Vanini S.A., (2017), A Thermo-Electro-Mechanical Vibration Analysis of Size-Dependent Functionally Graded Piezoelectric Nanobeams, Advances in High Temperature Ceramic Matrix Composites and Materials for Sustainable Development; Ceramic Transactions, Vol. 263, 547–558.Search in Google Scholar

2. Aydogdu M., (2009), A general nonlocal beam theory: Its application to nanobeam bending, buckling and vibration, Physica E: Low-dimensional Systems and Nanostructures, Vol. 41(9), 1651–1655.Search in Google Scholar

3. Bhushan B. (Ed), (2004), Springer Handbook of Nanotechnology, Springer Verlag, Berlin.10.1007/978-3-662-40019-7Search in Google Scholar

4. El-Borgi S., Fernandes R., Reddy J.N., (2015), Non-local free and forced vibrations of graded nanobeams resting on a non-linear elastic foundation, International Journal of Non-Linear Mechanics, Vol. 77, 348–363.Search in Google Scholar

5. Eltaher M.A., Emam S.A., Mahmoud F.F., (2012), Free vibration analysis of functionally graded size-dependent nanobeams. Applied Mathematics and Computation, Vol. 218(14), 7406–7420.10.1016/j.amc.2011.12.090Search in Google Scholar

6. Eltaher M.A., Emam S.A., Mahmoud F.F., (2013), Static and stability analysis of nonlocal functionally graded nanobeams, Composite Structures, Vol. 96, 82–88.Search in Google Scholar

7. Eltaher M.A., Fouda N., El-midany, T., Sadoun, A.M., (2018), Modified porosity model in analysis of functionally graded porous nanobeams. Journal of the Brazilian Society of Mechanical Sciences and Engineering, Vol. 40, 141.10.1007/s40430-018-1065-0Search in Google Scholar

8. Eringen A.C., (1972), Nonlocal polar elastic continua. International Journal of Engineering Science, Vol. 10(1), 1–16.10.1016/0020-7225(72)90070-5Search in Google Scholar

9. Eringen A.C., Edelen D.G.B., (1972), On nonlocal elasticity. International Journal of Engineering Science, Vol. 10(3), 233–248.10.1016/0020-7225(72)90039-0Search in Google Scholar

10. Ghadiri M., Rajabpour A., Akbarshahi A., (2017), Non-linear forced vibration analysis of nanobeams subjected to moving concentrated load resting on a viscoelastic foundation considering thermal and surface effects, Applied Mathematical Modelling, Vol. 50, 676–694.Search in Google Scholar

11. Karami B., Janghorban M., (2019), A new size-dependent shear deformation theory for free vibration analysis of functionally graded/anisotropic nanobeams, Thin-Walled Structures, Vol. 143, 106227.Search in Google Scholar

12. Kerr A.D., (1965), A study of a new foundation model. Acta Mechanica, Vol. 1(2), 135–147.10.1007/BF01174308Search in Google Scholar

13. Kim J., Żur K.K., Reddy, J.N., (2019), Bending, free vibration, and buckling of modified couples stress-based functionally graded porous micro-plates, Composite Structures, Vol. 209, 879–888.Search in Google Scholar

14. Lam D.C.C., Yang F., Chong A.C.M., Wang J., Tong P., (2003), Experiments and theory in strain gradient elasticity, Journal of the Mechanics and Physics of Solids, Vol. 51(8), 1477–1508.Search in Google Scholar

15. Leondes C.T. (Ed), (2006), MEMS/NEMS Handbook Techniques and Applications, Springer, New York.10.1007/b136111Search in Google Scholar

16. Li L., Hu Y., (2015), Buckling analysis of size-dependent nonlinear beams based on a nonlocal strain gradient theory, International Journal of Engineering Science, Vol. 97, 84–94.Search in Google Scholar

17. Lim C.W., Li C., Yu J.-L., (2010), Free vibration of pre-tensioned nanobeams based on nonlocal stress theory, Journal of Zhejiang University-SCIENCE A, Vol. 11, 34–42.Search in Google Scholar

18. Lim C.W., Zhang G., Reddy J.N., (2015), A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. Journal of the Mechanics and Physics of Solids, Vol. 78, 298–313.10.1016/j.jmps.2015.02.001Search in Google Scholar

19. Lu L., Guo X., Zhao J., (2017), Size-dependent vibration analysis of nanobeams based on the nonlocal strain gradient theory, International Journal of Engineering Science, Vol. 116, 12–24.Search in Google Scholar

20. Lv Z., Qiu Z., Zhu J., Zhu B., Yang W., (2018), Nonlinear free vibration analysis of defective FG nanobeams embedded in elastic medium, Composite Structures, Vol. 202, 675–685.Search in Google Scholar

21. Lyshevski S.E., (2002), MEMS and NEMS: System, Devices and Structures, CRC Press, New York.Search in Google Scholar

22. Mindlin R.D., (1964), Micro-structure in linear elasticity. Archive for Rational Mechanics and Analysis, Vol. 16, 51–78.10.1007/BF00248490Search in Google Scholar

23. Mindlin R.D., (1965), Second gradient of strain and surface-tension in linear elasticity. International Journal of Solids and Structures Vol. 1(4), 417–438.10.1016/0020-7683(65)90006-5Search in Google Scholar

24. Nazemnezhad R., Hosseini-Hashemi S., (2014), Nonlocal nonlinear free vibration of functionally graded nanobeams, Composite Structures, Vol. 110, 192–199.Search in Google Scholar

25. Pasternak P.L., (1954), On a New method of Analysis of an Elastic Foundation by Means of Two Foundation Constants, Gosudarstvennoe Izdatelstvo Literaturi po Stroitelstvu I Arkhitekture, Moscow.Search in Google Scholar

26. Rahmani O., Jandaghian A.A., (2015), Buckling analysis of functionally graded nanobeams based on a nonlocal third-order shear deformation theory. Applied Physics A, Vol. 119, 1019–1032.10.1007/s00339-015-9061-zSearch in Google Scholar

27. Reddy J.N., (2017), Energy principles and variational methods in applied mechanics, John Wiley & Sons, New York.Search in Google Scholar

28. Reza Barati M., (2017), Investigating dynamic response of porous inhomogeneous nanobeams on hybrid Kerr foundation under hygro-thermal loading, Applied Physics A, Vol. 123, 332.Search in Google Scholar

29. Saffari S., Hashemian M., Toghraie D., (2017), Dynamic stability of functionally graded nanobeam based on nonlocal Timoshenko theory considering surface effects, Physica B: Condensed Matter, Vol. 520, 97–105.Search in Google Scholar

30. Sahmani S., Ansari R., (2011), Nonlocal beam models for buckling of nanobeams using state-space method regarding different boundary conditions, Journal of Mechanical Science and Technology, Vol. 25, 2365.Search in Google Scholar

31. Shafiei N., Mirjavadi S.S., Afshari B.M., Rabby S., Kazemi, M., (2017), Vibration of two-dimensional imperfect functionally graded (2D-FG) porous nano-/micro-beams, Computer Methods in Applied Mechanics and Engineering, Vol. 322, 615–632.Search in Google Scholar

32. Şimşek M., (2014), Large amplitude free vibration of nanobeams with various boundary conditions based on the nonlocal elasticity theory, Composites Part B: Engineering, Vol. 56, 621–628.Search in Google Scholar

33. Şimşek M., (2016), Nonlinear free vibration of a functionally graded nanobeam using nonlocal strain gradient theory and a novel Hamiltonian approach, International Journal of Engineering Science, Vol. 105, 12–27.Search in Google Scholar

34. Thai H.T., (2012), A nonlocal beam theory for bending, buckling, and vibration of nanobeams, International Journal of Engineering Science, Vol. 52, 56–64.Search in Google Scholar

35. Thai H.T., Vo T.P., (2012a), A nonlocal sinusoidal shear deformation beam theory with application to bending, buckling, and vibration of nanobeams. International Journal of Engineering Science, Vol. 54, 58–66.10.1016/j.ijengsci.2012.01.009Search in Google Scholar

36. Thai H.T., Vo, T.P., (2012b), Bending and free vibration of functionally graded beams using various higher order shear deformation beam theories. International Journal of Mechanical Sciences, Vol. 62(1), 57–66.10.1016/j.ijmecsci.2012.05.014Search in Google Scholar

37. Timoshenko S., Woinowsky-Krieger S., (1959), Theory of plates and shells, McGraw-Hill Book Company, New York.Search in Google Scholar

38. Toupin R,A., (1962), Elastic materials with couple-stresses. Archive for Rational Mechanics and Analysis, Vol. 11, 385–414.10.1007/BF00253945Search in Google Scholar

39. Yang F., Chong A.C.M., Lam D.C.C., Tong P., (2002), Couple stress based strain gradient theory for elasticity, International Journal of Solids and Structures, Vol. 39(10), 2731–2743.Search in Google Scholar

40. Zhang K, Ge M.-H., Zhao C., Deng Z-C., Lu, X-J., (2019), Free vibration of nonlocal Timoshenko beams made of functionally graded materials by Symplectic method, Composites Part B: Engineering, 156, 174–184.10.1016/j.compositesb.2018.08.051Search in Google Scholar

Polecane artykuły z Trend MD

Zaplanuj zdalną konferencję ze Sciendo