1. bookTom 14 (2020): Zeszyt 3 (September 2020)
Informacje o czasopiśmie
Format
Czasopismo
eISSN
2300-5319
Pierwsze wydanie
22 Jan 2014
Częstotliwość wydawania
4 razy w roku
Języki
Angielski
Otwarty dostęp

Parametric Study on the Spring-Back Effect in AA5052 Alloy in the Course of Three-Point Roll Bending Process

Data publikacji: 20 Nov 2020
Tom & Zeszyt: Tom 14 (2020) - Zeszyt 3 (September 2020)
Zakres stron: 128 - 134
Otrzymano: 25 Dec 2019
Przyjęty: 16 Oct 2020
Informacje o czasopiśmie
Format
Czasopismo
eISSN
2300-5319
Pierwsze wydanie
22 Jan 2014
Częstotliwość wydawania
4 razy w roku
Języki
Angielski

1. Abvabi A., Mendiguren J., Rolfe B.F., Weiss M. (2014), Springback Investigation in Roll Forming of a V-Section, Applied mechanics and materials, 553, 643–648.10.4028/www.scientific.net/AMM.553.643Search in Google Scholar

2. Ameen H.A. (2012), Effect of Sheet Thickness and Type of Alloys on the Springback Phenomenon for Cylindrical Die, American journal of scientific and industrial research, 480.Search in Google Scholar

3. Badr O.M., Rolfe B., Zhang P., Weiss M. (2017), Applying a new constitutive model to analyse the springbackbehaviour of titanium in bending and roll forming, International Journal of Mechanical Sciences, 128, 389–400,10.1016/j.ijmecsci.2017.05.025Search in Google Scholar

4. Belykh S., Krivenok A., Bormotin K., Stankevich A., Krupskiy R., Mishagin V., Burenin A. (2016), Numerical and Experimental Study of Multi-Point Forming of Thick Double-Curvature Plates from Aluminum Alloy 7075, KnE Materials Science, vol (NA), 17–23.10.18502/kms.v1i1.556Search in Google Scholar

5. Davies R., Magee C. (1977), The effect of strain rate upon the bending behavior of materials, ASME, New York.10.1115/1.3443405Search in Google Scholar

6. Fortin P., Bull M., Moore D. (1983), An optimized aluminum alloy (x6111) for auto body sheet applications, SAE Technical Paper.10.4271/830096Search in Google Scholar

7. Gandhi A., Raval H., (2006), Article Title, ASME 2006 International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers Digital Collection, 107–116.Search in Google Scholar

8. Ghimire S., Emeerith Y., Ghosh R., Ghosh S., Barman R.N. (2017), Finite Element Analysis of an Aluminium Alloy Sheet in a VDie Punch Mechanism Considering Spring-Back Effect, International Journal of Theoretical and Applied Mechanics, 12, 331–342.Search in Google Scholar

9. Guo X., Gu Y., Wang H., Jin K., Tao J. (2018), The Bauschinger effect and mechanical properties of AA5754 aluminum alloy in incremental forming process, The International Journal of Advanced Manufacturing Technology, 94, 1387–1396.10.1007/s00170-017-0965-ySearch in Google Scholar

10. Hansen N., Jannerup O. (1979), Modelling of elastic-plastic bending of beams using a roller bending machine, ASME, New York10.1115/1.3439511Search in Google Scholar

11. Hardt D., Roberts M., Stelson K.A. (1982), Closed-loop shape control of a roll-bending process, ASME, New York10.1115/1.3139715Search in Google Scholar

12. Hecker S. (1975), Formability of aluminum alloy sheets, ASME, New York10.1115/1.3443263Search in Google Scholar

13. Hill R. (1958), A general theory of uniqueness and stability in elastic-plastic solids, Journal of the Mechanics and Physics of Solids, 6, 236–249.10.1016/0022-5096(58)90029-2Search in Google Scholar

14. Hu J., Marciniak Z., Duncan J. (2002), Mechanics of sheet metal forming, Elsevier, Oxford.Search in Google Scholar

15. HyperWorks (2010), HyperMesh, Version 11.Search in Google Scholar

16. HyperWorks (2014), Hyperworks 14.0 RADIOSS reference guide, Altair engineering.Search in Google Scholar

17. Khamneh M.E., Askari-Paykani M., ShahverdiH,.,Hadavi S.M.M., Emami M. (2016), Optimization of spring-back in creep age forming process of 7075 Al-Alclad alloy using D-optimal design of experiment method, Measurement 88, 278–286,10.1016/j.measurement.2016.03.003Search in Google Scholar

18. Ktari A., Antar Z., Haddar N., Elleuch K. (2012), Modeling and computation of the three-roller bending process of steel sheets, Journal of mechanical science and technology, 26, 123–128.10.1007/s12206-011-0936-4Search in Google Scholar

19. Kumar K.D., Appukuttan K., Neelakantha V., Naik P.S. (2014), Experimental determination of spring back and thinning effect of aluminum sheet metal during L-bending operation, Materials & Design, 56, 613–619.10.1016/j.matdes.2013.11.047Search in Google Scholar

20. Lee M.-G., Kim D., Kim C., Wenner M.L., Chung K. (2005), Spring-back evaluation of automotive sheets based on isotropic–kinematic hardening laws and non-quadratic anisotropic yield functions, part III: applications, International journal of plasticity, 21, 915–953.10.1016/j.ijplas.2004.05.014Search in Google Scholar

21. Liu Y., Wang L., Zhu B., Wang Y., Zhang Y. (2018), Identification of two aluminum alloys and springback behaviors in cold bending, Procedia Manufacturing, 15, 701–708.10.1016/j.promfg.2018.07.303Search in Google Scholar

22. Parsa M., Pishbin H., Kazemi M. (2012), Investigating spring back phenomena in double curved sheet metals forming, Materials & Design, 41, 326–337.10.1016/j.matdes.2012.05.009Search in Google Scholar

23. Paulsen F., Welo T. (1996), Application of numerical simulation in the bending of aluminium-alloy profiles, Journal of Materials Processing Technology, 58, 274–285.10.1016/0924-0136(95)02152-3Search in Google Scholar

24. Ramalingam V.V., Ramasamy P. (2017), Modelling corrosion behavior of friction stir processed aluminium alloy 5083 using polynomial: radial basis function, Transactions of the Indian Institute of Metals, 70, 2575–2589.10.1007/s12666-017-1110-1Search in Google Scholar

25. Srivastav Y., Shinde S. (2010), Dynamic Simulation and Analysis of Plate Roll Bending Process for Forming a Cylindrical Shell, Proceedings of the HyperWorks Technology Conference 2010, Altair Technology Conference.Search in Google Scholar

26. Vignesh R.V., Padmanaban R., Datta M. (2018), Influence of FSP on the microstructure, microhardness, intergranular corrosion susceptibility and wear resistance of AA5083 alloy, Tribology-Materials, Surfaces & Interfaces, 12(3), 157–169.10.1080/17515831.2018.1483295Search in Google Scholar

27. VigneshV., Padmanaban R. (2018), Modelling of peak temperature during friction stir processing of magnesium alloy AZ91, IOP Conference Series: Materials Science and Engineering, 310(1), 012019.10.1088/1757-899X/310/1/012019Search in Google Scholar

28. Westermann I., Snilsberg K.E., Sharifi Z., Hopperstad O.S., Marthinsen K., Holmedal B. (2011), Three-point bending of heat-treatable aluminum alloys: influence of microstructure and texture on bendability and fracture behavior, Metallurgical and Materials Transactions, A 42, 3386–3398.10.1007/s11661-011-0768-ySearch in Google Scholar

29. Xing M.-Z., Wang Y.-G., Jiang Z.-X. (2013), Dynamic fracture behaviors of selected aluminum alloys under three-point bending, De-fence Technology, 9, 193–200.10.1016/j.dt.2013.11.002Search in Google Scholar

30. Xu W., Ma C., Li C., Feng W. (2004), Sensitive factors in springback simulation for sheet metal forming, Journal of Materials Processing Technology, 151, 217–222, (2004).10.1016/j.jmatprotec.2004.04.044Search in Google Scholar

31. Yang M., Shima S. (1988), Simulation of pyramid type three-roll bending process, International Journal of Mechanical Sciences, 30, 877–886.10.1016/0020-7403(88)90071-9Search in Google Scholar

Polecane artykuły z Trend MD

Zaplanuj zdalną konferencję ze Sciendo