Otwarty dostęp

Enzymatic and Non-Enzymatic Response during Nitrosative Stress in Escherichia coli


Zacytuj

Abreu I.A., Cabelli D.E.: Superoxide dismutases a review of the metal-associated mechanistic variations. Biochim. Biophys. Acta, 1804, 263–274 (2009) AbreuI.A. CabelliD.E. Superoxide dismutases a review of the metal-associated mechanistic variations Biochim. Biophys. Acta. 1804 263 274 2009 10.1016/j.bbapap.2009.11.00519914406 Search in Google Scholar

Adolfsen K.J., Chou W.K., Brynildsen M.P.: Transcriptional regulation contributes to prioritized detoxification of hydrogen peroxide over nitric oxide. J. Bacteriol. 201, e00081–19 (2019) AdolfsenK.J. ChouW.K. BrynildsenM.P. Transcriptional regulation contributes to prioritized detoxification of hydrogen peroxide over nitric oxide J. Bacteriol. 201 e00081 19 2019 10.1128/JB.00081-19659739231061166 Search in Google Scholar

Alvarez B., Radi R.: Peroxynitrite reactivity with amino acids and proteins. Amino Acids, 25, 295–311 (2003) AlvarezB. RadiR. Peroxynitrite reactivity with amino acids and proteins Amino Acids 25 295 311 2003 10.1007/s00726-003-0018-814661092 Search in Google Scholar

Aquilano K., Baldelli S., Ciriolo M.R.: Glutathione: new roles in redox signaling for an old antioxidant. Front. Pharmacol. 5, 1–12 (2014) AquilanoK. BaldelliS. CirioloM.R. Glutathione: new roles in redox signaling for an old antioxidant Front. Pharmacol. 5 1 12 2014 10.3389/fphar.2014.00196414409225206336 Search in Google Scholar

Balasiny B., Rolfe M., Vine C., Bradley C., Green J., Cole J.: Release of nitric oxide by the Escherichia coli YtfE (RIC) protein and its reduction by the hybrid cluster protein in an integrated pathway to minimize cytoplasmic nitrosative stress. Microbiology, 164, 563–575 (2018) BalasinyB. RolfeM. VineC. BradleyC. GreenJ. ColeJ. Release of nitric oxide by the Escherichia coli YtfE (RIC) protein and its reduction by the hybrid cluster protein in an integrated pathway to minimize cytoplasmic nitrosative stress Microbiology 164 563 575 2018 10.1099/mic.0.00062929493496 Search in Google Scholar

Bamford V.A., Angove H.C., Seward H.E., Thomson A.J., Cole J.A., Butt J.N., Hemmings A.M., Richardson D.J.: Structure and spectroscopy of the periplasmic cytochrome c nitrite reductase from Escherichia coli. Biochemistry, 41, 2921–2931 (2002) BamfordV.A. AngoveH.C. SewardH.E. ThomsonA.J. ColeJ.A. ButtJ.N. HemmingsA.M. RichardsonD.J. Structure and spectroscopy of the periplasmic cytochrome c nitrite reductase from Escherichia coli Biochemistry 41 2921 2931 2002 10.1021/bi015765d11863430 Search in Google Scholar

Baptista J.M., Justino M.C., Melo A.M., Teixeira M., Saraiva L.M.: Oxidative stress modulates the nitric oxide defense promoted by Escherichia coli flavorubredoxin. J. Bacteriol. 194, 3611–3617 (2012) BaptistaJ.M. JustinoM.C. MeloA.M. TeixeiraM. SaraivaL.M. Oxidative stress modulates the nitric oxide defense promoted by Escherichia coli flavorubredoxin J. Bacteriol. 194 3611 3617 2012 10.1128/JB.00140-12339350022563051 Search in Google Scholar

Beebout C.J., Hadjifrangiskou M. et al.: Respiratory heterogeneity shapes biofilm formation and host colonization in uropathogenic Escherichia coli. Mbio, 10, e02400–18 (2019) BeeboutC.J. HadjifrangiskouM. Respiratory heterogeneity shapes biofilm formation and host colonization in uropathogenic Escherichia coli Mbio 10 e02400 18 2019 10.1128/mBio.02400-18644594330940709 Search in Google Scholar

Bodenmiller D.M., Spiro S.: The yjeB (nsrR) gene of Escherichia coli encodes a nitric oxide-sensitive transcriptional regulator. J. Bacteriol. 188, 874–881 (2006) BodenmillerD.M. SpiroS. The yjeB (nsrR) gene of Escherichia coli encodes a nitric oxide-sensitive transcriptional regulator J. Bacteriol. 188 874 881 2006 10.1128/JB.188.3.874-881.2006134735816428390 Search in Google Scholar

Bonamore A., Boffi A.: Flavohemoglobin: Structure and reactivity. IUBMB Life, 60, 19–28 (2008) BonamoreA. BoffiA. Flavohemoglobin: Structure and reactivity IUBMB Life 60 19 28 2008 10.1002/iub.918379989 Search in Google Scholar

Borisov V.B., Forte E., Konstantinov A.A.: Interaction of the bacterial terminal oxidase cytochrome bd with nitric oxide. FEBS let. 576, 201–204 (2004) BorisovV.B. ForteE. KonstantinovA.A. Interaction of the bacterial terminal oxidase cytochrome bd with nitric oxide FEBS let 576 201 204 2004 10.1016/j.febslet.2004.09.013 Search in Google Scholar

Borisov V.B., Forte E., Siletsky S.A., Sarti P., Giuffrè A.: Cytochrome bd from Escherichia coli catalyzes peroxynitrite decomposition. Biochim. Biophys. Acta, 1847, 182–188 (2015) BorisovV.B. ForteE. SiletskyS.A. SartiP. GiuffrèA. Cytochrome bd from Escherichia coli catalyzes peroxynitrite decomposition Biochim. Biophys. Acta 1847 182 188 2015 10.1016/j.bbabio.2014.10.006 Search in Google Scholar

Bower J.M., Gordon-Raagas H.B., Mulvey M.A.: Conditioning of uropathogenic Escherichia coli for enhanced colonization of host. Infect. Immun. 77, 2104–2112 (2009) BowerJ.M. Gordon-RaagasH.B. MulveyM.A. Conditioning of uropathogenic Escherichia coli for enhanced colonization of host Infect. Immun. 77 2104 2112 2009 10.1128/IAI.01200-08 Search in Google Scholar

Brandes N., Rinck A., Leichert L.I.: Nitrosative stress treatment of E. coli targets distinct set of thiol-containing proteins. Mol. Microbiol. 66, 901–914 (2007) BrandesN. RinckA. LeichertL.I. Nitrosative stress treatment of E. coli targets distinct set of thiol-containing proteins Mol. Microbiol. 66 901 914 2007 10.1111/j.1365-2958.2007.05964.x Search in Google Scholar

Brunelli L., Vladimir Y., Beckman J.S.: Modulation of catalase peroxidatic and catalatic activity by nitric oxide. Free Radic. Biol. Med. 30, 709–714 (2001) BrunelliL. VladimirY. BeckmanJ.S. Modulation of catalase peroxidatic and catalatic activity by nitric oxide Free Radic. Biol. Med. 30 709 714 2001 10.1016/S0891-5849(00)00512-8 Search in Google Scholar

Bryk R., Griffin P., Nathan C.: Peroxynitrite reductase activity of bacterial peroxiredoxins. Nature, 407, 211–215 (2000) BrykR. GriffinP. NathanC. Peroxynitrite reductase activity of bacterial peroxiredoxins Nature 407 211 215 2000 10.1038/3502510911001062 Search in Google Scholar

Brzuszkiewicz E., Gottschalk G., Ron E., Hacker J., Dobrindt U.: Adaptation of pathogenic E. coli to various niches: genome flexibility is the key. Genome Dyn. 6, 110–125 (2009) BrzuszkiewiczE. GottschalkG. RonE. HackerJ. DobrindtU. Adaptation of pathogenic E. coli to various niches: genome flexibility is the key Genome Dyn. 6 110 125 2009 10.1159/00023576619696497 Search in Google Scholar

Burner U., Furtmuller P.G., Kettle A.J., Koppenol W.H., Obinger C.: Mechanism of reaction of myeloperoxidase with nitrite. J. Biol. Chem. 275, 20597–20601 (2000) BurnerU. FurtmullerP.G. KettleA.J. KoppenolW.H. ObingerC. Mechanism of reaction of myeloperoxidase with nitrite J. Biol. Chem. 275 20597 20601 2000 10.1074/jbc.M00018120010777476 Search in Google Scholar

Cardozo V.F., Lancheros C.A., Narciso A.M., Valereto E.C., Kobayashi R.K., Seabra A.B., Nakazato G.: Evaluation of antibacterial activity of nitric oxide-releasing polymeric particles against Staphylococcus aureus and Escherichia coli from bovine mastitis. Int. J. Pharm. 473, 20–29 (2014) CardozoV.F. LancherosC.A. NarcisoA.M. ValeretoE.C. KobayashiR.K. SeabraA.B. NakazatoG. Evaluation of antibacterial activity of nitric oxide-releasing polymeric particles against Staphylococcus aureus and Escherichia coli from bovine mastitis Int. J. Pharm. 473 20 29 2014 10.1016/j.ijpharm.2014.06.05124979535 Search in Google Scholar

Clarke T.A., Dennison V., Seward H.E., Burlat B., Cole J.A., Hemmings A.M., Richardson D.J.: Purification and spectropotentiometric characterization of Escherichia coli nrfb a decaheme homodimer that transfers electrons to the decaheme periplasmic nitrite reductase complex. J. Biol. Chem. 279, 41333–41339 (2004) ClarkeT.A. DennisonV. SewardH.E. BurlatB. ColeJ.A. HemmingsA.M. RichardsonD.J. Purification and spectropotentiometric characterization of Escherichia coli nrfb a decaheme homodimer that transfers electrons to the decaheme periplasmic nitrite reductase complex J. Biol. Chem. 279 41333 41339 2004 10.1074/jbc.M40760420015280383 Search in Google Scholar

Corker H., Poole R.K.: Nitric oxide formation by Escherichia coli. J. Biol. Chem. 278, 31584–31592 (2003) CorkerH. PooleR.K. Nitric oxide formation by Escherichia coli J. Biol. Chem. 278 31584 31592 2003 10.1074/jbc.M30328220012783887 Search in Google Scholar

Cotter P.D., Hill C.: Surviving the acid test: responses of gram-positive bacteria to low pH. Microbiol. Mol. Biol. Rev. 67, 429–453 (2003) CotterP.D. HillC. Surviving the acid test: responses of gram-positive bacteria to low pH Microbiol. Mol. Biol. Rev. 67 429 453 2003 10.1128/MMBR.67.3.429-453.200319386812966143 Search in Google Scholar

Cross R., Lloyd D., Poole R.K., Moir J.W.: Enzymatic removal of nitric oxide catalyzed by cytochrome c in Rhodobacter capsulatus. J. Bacteriol. 183, 3050–3054 (2001) CrossR. LloydD. PooleR.K. MoirJ.W. Enzymatic removal of nitric oxide catalyzed by cytochrome c in Rhodobacter capsulatus J. Bacteriol. 183 3050 3054 2001 10.1128/JB.183.10.3050-3054.20019520411325932 Search in Google Scholar

Cruz-Ramos H., Crack J., Wu G., Hughes M.N., Scott C., Thomson A.J., Green J., Poole R.K.: NO sensing by FNR: regulation of the Escherichia coli NO-detoxifying flavohaemoglobin Hmp. EMBO J. 21, 3235–3244 (2002) Cruz-RamosH. CrackJ. WuG. HughesM.N. ScottC. ThomsonA.J. GreenJ. PooleR.K. NO sensing by FNR: regulation of the Escherichia coli NO-detoxifying flavohaemoglobin Hmp EMBO J. 21 3235 3244 2002 10.1093/emboj/cdf33912608812093725 Search in Google Scholar

de Jesús-Berríos M., Liu L., Nussbaum J.C., Cox G.M., Stamler J.S., Heitman J.: Enzymes that counteract nitrosative stress promote fungal virulence. Curr. Biol. 13, 1963–1968 (2003) de Jesús-BerríosM. LiuL. NussbaumJ.C. CoxG.M. StamlerJ.S. HeitmanJ. Enzymes that counteract nitrosative stress promote fungal virulence Curr. Biol. 13 1963 1968 2003 10.1016/j.cub.2003.10.02914614821 Search in Google Scholar

Dickinson D.A., Forman H.J.: Glutathione in Defense and Signaling: lessons from a small thiol. Ann. New York Acad. Sci. 973, 488–504 (2002) DickinsonD.A. FormanH.J. Glutathione in Defense and Signaling: lessons from a small thiol Ann. New York Acad. Sci. 973 488 504 2002 10.1111/j.1749-6632.2002.tb04690.x12485918 Search in Google Scholar

Dobbek H., Svetlitchnyi V., Gremer L., Huber R., Meyer O.: Crystal structure of a carbon monoxide dehydrogenase reveals a [Ni-4Fe-5S] cluster. Science, 293, 1281–1285 (2001) DobbekH. SvetlitchnyiV. GremerL. HuberR. MeyerO. Crystal structure of a carbon monoxide dehydrogenase reveals a [Ni-4Fe-5S] cluster Science 293 1281 1285 2001 10.1126/science.106150011509720 Search in Google Scholar

Dong M., Vongchampa V., Gingipalli L., Cloutier J.F., Kow Y.W., O’Connor T., Dedon P.C.: Development of enzymatic probes of oxidative and nitrosative DNA damage caused by reactive nitrogen species. Mutat. Res. 594, 120–134 (2006) DongM. VongchampaV. GingipalliL. CloutierJ.F. KowY.W. O’ConnorT. DedonP.C. Development of enzymatic probes of oxidative and nitrosative DNA damage caused by reactive nitrogen species Mutat. Res. 594 120 134 2006 10.1016/j.mrfmmm.2005.08.00816274707 Search in Google Scholar

Dubuisson M., Vander Stricht D., Clippe A., Etienne F., Nauser T., Kissner R., Koppenol W.H., Rees J.F., Knoops B.: Human peroxiredoxin 5 is a peroxynitrite reductase. FEBS Lett. 571, 161–165 (2004) DubuissonM. Vander StrichtD. ClippeA. EtienneF. NauserT. KissnerR. KoppenolW.H. ReesJ.F. KnoopsB. Human peroxiredoxin 5 is a peroxynitrite reductase FEBS Lett 571 161 165 2004 10.1016/j.febslet.2004.06.08015280035 Search in Google Scholar

Einsle O., Messerschmidt A., Huber R., Kroneck P.M., Neese F.: Mechanism of the six-electron reduction of nitrite to ammonia by cytochrome c nitrite reductase. J. Am. Chem. Soc. 124, 11737–11745 (2002) EinsleO. MesserschmidtA. HuberR. KroneckP.M. NeeseF. Mechanism of the six-electron reduction of nitrite to ammonia by cytochrome c nitrite reductase J. Am. Chem. Soc. 124 11737 11745 2002 10.1021/ja020648712296741 Search in Google Scholar

Failli P., Nistri S., Quattrone S., Mazzetti L., Bigazzi M., Sacchi T.B., Bani D.: Relaxin up-regulates inducible nitric oxide synthase expression and nitric oxide generation in rat coronary endothelial cells. FASEB J. 16, 252–254 (2002) FailliP. NistriS. QuattroneS. MazzettiL. BigazziM. SacchiT.B. BaniD. Relaxin up-regulates inducible nitric oxide synthase expression and nitric oxide generation in rat coronary endothelial cells FASEB J. 16 252 254 2002 10.1096/fj.01-0569fje Search in Google Scholar

Ferrer-Sueta G., Radi R.: Chemical biology of peroxynitrite: kinetics diffusion and radicals. ACS Chem. Biol. 14, 161–177 (2009) Ferrer-SuetaG. RadiR. Chemical biology of peroxynitrite: kinetics diffusion and radicals ACS Chem. Biol. 14 161 177 2009 10.1021/cb800279q Search in Google Scholar

Forman H.J., Maiorino M., Ursini F.: Signaling functions of reactive oxygen species. Biochemistry, 49, 835–842 (2010) FormanH.J. MaiorinoM. UrsiniF. Signaling functions of reactive oxygen species Biochemistry 49 835 842 2010 10.1021/bi9020378 Search in Google Scholar

Forman H.J., Ursini F., Maiorino M.: An overview of mechanisms of redox signaling. J. Mol. Cell. Cardiol. 73, 2–9 (2014) FormanH.J. UrsiniF. MaiorinoM. An overview of mechanisms of redox signaling J. Mol. Cell. Cardiol. 73 2 9 2014 10.1016/j.yjmcc.2014.01.018 Search in Google Scholar

Forrester M.T., Eyler C.E., Rich J.N.: Bacterial flavohemoglobin: a molecular tool to probe mammalian nitric oxide biology. Bio-Techniques, 50, 41–45 (2011) ForresterM.T. EylerC.E. RichJ.N. Bacterial flavohemoglobin: a molecular tool to probe mammalian nitric oxide biology Bio-Techniques 50 41 45 2011 10.2144/000113586 Search in Google Scholar

Forrester M.T., Foster M.W.: Protection from nitrosative stress: a central role for microbial flavohemoglobin. Free Radic. Biol. Med. 52, 1620–1633 (2012) ForresterM.T. FosterM.W. Protection from nitrosative stress: a central role for microbial flavohemoglobin Free Radic. Biol. Med. 52 1620 1633 2012 10.1016/j.freeradbiomed.2012.01.028 Search in Google Scholar

Fournier M., Zhang Y., Wildschut J.D., Dolla A., Voordouw J.K., Schriemer D.C., Voordouw G.: Function of oxygen resistance proteins in the anaerobic sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. J. Bacteriol. 185, 71–79 (2003) FournierM. ZhangY. WildschutJ.D. DollaA. VoordouwJ.K. SchriemerD.C. VoordouwG. Function of oxygen resistance proteins in the anaerobic sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough J. Bacteriol. 185 71 79 2003 10.1128/JB.185.1.71-79.2003 Search in Google Scholar

Gardner A.M., Gardner P.R.: Flavohemoglobin detoxifies nitric oxide in aerobic but not anaerobic Escherichia coli: Evidence for a novel inducible anaerobic nitric oxide scavenging activity. J. Biol. Chem. 277, 8166–8171 (2002) GardnerA.M. GardnerP.R. Flavohemoglobin detoxifies nitric oxide in aerobic but not anaerobic Escherichia coli: Evidence for a novel inducible anaerobic nitric oxide scavenging activity J. Biol. Chem. 277 8166 8171 2002 10.1074/jbc.M110470200 Search in Google Scholar

Gardner A.M., Helmick R.A., Gardner P.R.: Flavorubredoxin an inducible catalyst for nitric oxide reduction and detoxification in Escherichia coli. J. Biol. Chem. 277, 8172–8177 (2002) GardnerA.M. HelmickR.A. GardnerP.R. Flavorubredoxin an inducible catalyst for nitric oxide reduction and detoxification in Escherichia coli J. Biol. Chem. 277 8172 8177 2002 10.1074/jbc.M110471200 Search in Google Scholar

Gardner P.R., Martin L.A., Hall D., Gardner A.M.: Dioxygen-dependent metabolism of nitric oxide in mammalian cells. Free Radic. Biol. Med. 31, 191–204 (2001) GardnerP.R. MartinL.A. HallD. GardnerA.M. Dioxygen-dependent metabolism of nitric oxide in mammalian cells Free Radic. Biol. Med. 31 191 204 2001 10.1016/S0891-5849(01)00569-X Search in Google Scholar

Gebicka L., Didik J.: Catalytic scavenging of peroxynitrite by catalase. J. Inorg. Biochem. 103, 1375–1379 (2009) GebickaL. DidikJ. Catalytic scavenging of peroxynitrite by catalase J. Inorg. Biochem. 103 1375 1379 2009 10.1016/j.jinorgbio.2009.07.011 Search in Google Scholar

Giuffrè A., Borisov V.B., Arese M., Sarti P., Forte E.: Cytochrome bd oxidase and bacterial tolerance to oxidative and nitrosative stress. Biochim. Biophys. Acta, 1837, 1178–1187 (2014) GiuffrèA. BorisovV.B. AreseM. SartiP. ForteE. Cytochrome bd oxidase and bacterial tolerance to oxidative and nitrosative stress Biochim. Biophys. Acta 1837 1178 1187 2014 10.1016/j.bbabio.2014.01.016 Search in Google Scholar

Halliwell B.: Biochemistry of oxidative stress. Biochem. Soc. Trans. 35, 1147–1150 (2007) HalliwellB. Biochemistry of oxidative stress Biochem. Soc. Trans. 35 1147 1150 2007 10.1042/BST0351147 Search in Google Scholar

Han D., Canali R., Garcia J., Aguilera R., Gallaher T.K., Cadenas E.: Sites and mechanisms of aconitase inactivation by peroxynitrite: modulation by citrate and glutathione. Biochemistry, 44, 11986–11996 (2005) HanD. CanaliR. GarciaJ. AguileraR. GallaherT.K. CadenasE. Sites and mechanisms of aconitase inactivation by peroxynitrite: modulation by citrate and glutathione Biochemistry 44 11986 11996 2005 10.1021/bi0509393 Search in Google Scholar

Hausladen A., Gow A., Stamler J.S.: Flavohemoglobin denitrosylase catalyzes the reaction of a nitroxyl equivalent with molecular oxygen. Proc. Natl. Acad. Sci. USA, 98, 10108–10112 (2001) HausladenA. GowA. StamlerJ.S. Flavohemoglobin denitrosylase catalyzes the reaction of a nitroxyl equivalent with molecular oxygen Proc. Natl. Acad. Sci. USA 98 10108 10112 2001 10.1073/pnas.181199698 Search in Google Scholar

Herrero E., Ros J., Bellí G., Cabiscol E.: Redox control and oxidative stress in yeast cells. Biochim. Biophys. Acta, 1780, 1217–1235 (2008) HerreroE. RosJ. BellíG. CabiscolE. Redox control and oxidative stress in yeast cells Biochim. Biophys. Acta 1780 1217 1235 2008 10.1016/j.bbagen.2007.12.004 Search in Google Scholar

Hill B.G., Dranka B.P., Bailey S.M., Lancaster J.R. Jr., Darley-Usmar V.M.: What part of NO don’t you understand? Some questions to the cardinal questions in nitric oxide biology. J. Biol. Chem. 285, 19699–19704 (2010) HillB.G. DrankaB.P. BaileyS.M. LancasterJ.R.Jr. Darley-UsmarV.M. What part of NO don’t you understand? Some questions to the cardinal questions in nitric oxide biology J. Biol. Chem. 285 19699 19704 2010 10.1074/jbc.R110.101618 Search in Google Scholar

Holyoake L.V., Hunt S., Sanguinetti G., Cook G.M., Howard M.J., Rowe M.L., Poole R.K., Shepherd M.: CycDC mediated reductant export in Escherichia coli controls the transcriptional wiring of energy metabolism and combats nitrosative stress. Biochem. J. 473, 693–701 (2016) HolyoakeL.V. HuntS. SanguinettiG. CookG.M. HowardM.J. RoweM.L. PooleR.K. ShepherdM. CycDC mediated reductant export in Escherichia coli controls the transcriptional wiring of energy metabolism and combats nitrosative stress Biochem. J. 473 693 701 2016 10.1042/BJ20150536 Search in Google Scholar

Hough M.A., Hasnain S.S.: Structure of fully reduced bovine copper zinc superoxide dismutase at 115 A. Structure, 11, 937–946 (2003) HoughM.A. HasnainS.S. Structure of fully reduced bovine copper zinc superoxide dismutase at 115 A Structure 11 937 946 2003 10.1016/S0969-2126(03)00155-2 Search in Google Scholar

Hutchings M.I., Mandhana N., Spiro S.: The NorR protein of Escherichia coli activates expression of the Flavorubredoxin gene norV in response to reactive nitrogen species. J. Bacteriol. 184, 4640–4643 (2002) HutchingsM.I. MandhanaN. SpiroS. The NorR protein of Escherichia coli activates expression of the Flavorubredoxin gene norV in response to reactive nitrogen species J. Bacteriol. 184 4640 4643 2002 10.1128/JB.184.16.4640-4643.200213525712142437 Search in Google Scholar

Hyduke D.R., Jarboe L.R., Tran L.M., Chou K.J., Liao J.C.: Integrated network analysis identifies nitric oxide response networks and dihydroxyacid dehydratase as a crucial target in Escherichia coli. Proc. Natl. Acad. Sci. USA, 104, 8484–8489 (2007) HydukeD.R. JarboeL.R. TranL.M. ChouK.J. LiaoJ.C. Integrated network analysis identifies nitric oxide response networks and dihydroxyacid dehydratase as a crucial target in Escherichia coli Proc. Natl. Acad. Sci. USA 104 8484 8489 2007 10.1073/pnas.0610888104 Search in Google Scholar

Imlay J.A.: Redox pioneer: Professor Irwin Fridovich. Antioxid. Redox Sign. 14, 335–340 (2011) ImlayJ.A. Redox pioneer: Professor Irwin Fridovich Antioxid. Redox Sign. 14 335 340 2011 10.1089/ars.2010.3264 Search in Google Scholar

Imlay J.A., Hassett D.J.: Oxidative and nitrosative stress defense systems Escherichia coli and Pseudomonas aeruginosa: A model organism of study versus a human opportunistic pathogen (in) Advances in Molecular and Cellular Microbiology, CABI Publishing, 2011, p.1–32 ImlayJ.A. HassettD.J. Oxidative and nitrosative stress defense systems Escherichia coli and Pseudomonas aeruginosa: A model organism of study versus a human opportunistic pathogen (in) Advances in Molecular and Cellular Microbiology CABI Publishing 2011 1 32 Search in Google Scholar

Janssen-Heininger Y.M., Persinger R.L., Korn S.H., Pantano C., McElhinney B., Reynaert N.L., Langen R.C., Ckless K., Shrivastava P., Poynter M.E.: Reactive nitrogen species and cell signaling: implications for death or survival of lung epithelium. Am. J. Respir. Crit. Care. Med. 16, S9–S16 (2002) Janssen-HeiningerY.M. PersingerR.L. KornS.H. PantanoC. McElhinneyB. ReynaertN.L. LangenR.C. CklessK. ShrivastavaP. PoynterM.E. Reactive nitrogen species and cell signaling: implications for death or survival of lung epithelium Am. J. Respir. Crit. Care. Med. 16 S9 S16 2002 10.1164/rccm.2206008 Search in Google Scholar

Jourdheuil D., Jourdheuil F.L., Feelisch M.: Oxidation and nitrosation of thiols at low micromolar exposure to nitric oxide evidence for a free radical mechanism. J. Biol. Chem. 278, 15720–15726 (2003) JourdheuilD. JourdheuilF.L. FeelischM. Oxidation and nitrosation of thiols at low micromolar exposure to nitric oxide evidence for a free radical mechanism J. Biol. Chem. 278 15720 15726 2003 10.1074/jbc.M300203200 Search in Google Scholar

Justino M.C., Almeida C.C., Teixeira M., Saraiva L.M.: Escherichia coli di-iron YtfE protein is necessary for the repair of stress-damaged iron-sulfur clusters. J. Biol. Chem. 282, 10352–10359 (2007) JustinoM.C. AlmeidaC.C. TeixeiraM. SaraivaL.M. Escherichia coli di-iron YtfE protein is necessary for the repair of stress-damaged iron-sulfur clusters J. Biol. Chem. 282 10352 10359 2007 10.1074/jbc.M610656200 Search in Google Scholar

Justino M.C., Vicente J.B., Teixeira M., Saraiva L.M.: New genes implicated in the protection of anaerobically grown Escherichia coli against nitric oxide. J. Biol. Chem. 280, 2636–2643 (2005) JustinoM.C. VicenteJ.B. TeixeiraM. SaraivaL.M. New genes implicated in the protection of anaerobically grown Escherichia coli against nitric oxide J. Biol. Chem. 280 2636 2643 2005 10.1074/jbc.M411070200 Search in Google Scholar

Keszler A., Zhang Y., Hogg N.: Reaction between nitric oxide, glutathione, and oxygen in the presence and absence of protein: How are S-nitrosothiols formed? Free Radic. Biol. Med. 48, 55–64 (2010) KeszlerA. ZhangY. HoggN. Reaction between nitric oxide, glutathione, and oxygen in the presence and absence of protein: How are S-nitrosothiols formed? Free Radic. Biol. Med. 48 55 64 2010 10.1016/j.freeradbiomed.2009.10.026 Search in Google Scholar

Khademian M., Imlay J.A.: Escherichia coli cytochrome c peroxidase is a respiratory oxidase that enables the use of hydrogen peroxide as a terminal electron acceptor. Proc. Natl. Acad. Sci. USA, 114, E6922–E6931 (2017) KhademianM. ImlayJ.A. Escherichia coli cytochrome c peroxidase is a respiratory oxidase that enables the use of hydrogen peroxide as a terminal electron acceptor Proc. Natl. Acad. Sci. USA 114 E6922 E6931 2017 10.1073/pnas.1701587114 Search in Google Scholar

Klandorf H., Dyke K.V.: Oxidative and nitrosative stresses: their role in health and disease in man and birds (in) Oxidative Stress – Molecular Mechanisms and Biological Effects, Ed. V. Lushchak, H. Semchyshyn, IntechOpen, London (2012), p. 47–60 KlandorfH. DykeK.V. Oxidative and nitrosative stresses: their role in health and disease in man and birds (in) Oxidative Stress – Molecular Mechanisms and Biological Effects Ed. LushchakV. SemchyshynH. IntechOpen London 2012 47 60 10.5772/33879 Search in Google Scholar

Köner H., Sofia H.J., Zumft W.G.: Phylogeny of the bacterial superfamily of Crp-Fnr transcription regulators: exploiting the metabolic spectrum by controlling alternative gene programs. FEMS Microbiol. Rev. 27, 559–592 (2003) KönerH. SofiaH.J. ZumftW.G. Phylogeny of the bacterial superfamily of Crp-Fnr transcription regulators: exploiting the metabolic spectrum by controlling alternative gene programs FEMS Microbiol. Rev. 27 559 592 2003 10.1016/S0168-6445(03)00066-4 Search in Google Scholar

Lindemann C., Lupilova N., Müller A., Warscheid B., Meyer H.E., Kuhlmann K., Eisenacher M., Leichert L.I.: Redox pro teomics uncovers peroxynitrite sensitive proteins that help Escherichia coli to overcome nitrosative stress. J. Biol. Chem. 288, 19698–19714 (2013) LindemannC. LupilovaN. MüllerA. WarscheidB. MeyerH.E. KuhlmannK. EisenacherM. LeichertL.I. Redox pro teomics uncovers peroxynitrite sensitive proteins that help Escherichia coli to overcome nitrosative stress J. Biol. Chem. 288 19698 19714 2013 10.1074/jbc.M113.457556370767523696645 Search in Google Scholar

Liu L., Hausladen A., Zeng M., Que L., Heitman J., Stamler J.S.: A metabolic enzyme for S-nitrosothiol conserved from bacteria to humans. Nature, 410, 490–494 (2001) LiuL. HausladenA. ZengM. QueL. HeitmanJ. StamlerJ.S. A metabolic enzyme for S-nitrosothiol conserved from bacteria to humans Nature 410 490 494 2001 10.1038/3506859611260719 Search in Google Scholar

Lumppio H.L., Shenvi N.V., Summers A.O., Voordouw G., Kurtz D.M. Jr.: Rubrerythrin and rubredoxin oxidoreductase in Desulfovibrio vulgaris: a novel oxidative stress protection system. J. Bacteriol. 183, 101–108 (2001) LumppioH.L. ShenviN.V. SummersA.O. VoordouwG. KurtzD.M.Jr. Rubrerythrin and rubredoxin oxidoreductase in Desulfovibrio vulgaris: a novel oxidative stress protection system J. Bacteriol. 183 101 108 2001 10.1128/JB.183.1.101-108.20019485511114906 Search in Google Scholar

Lushchak O.V., Inoue Y., Lushchak V.I.: Regulatory protein Yap1 is involved in response of yeast Saccharomyces cerevisiae to nitrosative stress. Biochem. (Mosc.) 75, 629–635 (2010) LushchakO.V. InoueY. LushchakV.I. Regulatory protein Yap1 is involved in response of yeast Saccharomyces cerevisiae to nitrosative stress Biochem. (Mosc.) 75 629 635 2010 10.1134/S0006297910050135 Search in Google Scholar

Macedo S., Aragão D., Mitchell E.P., Lindley P.: Structure of the hybrid cluster protein (HCP) from Desulfovibrio desulfuricans ATCC 27774 containing molecules in the oxidized and reduced states. Acta. Crystallogr. D. Biol. Crystallogr. 59, 2065–2071 (2003) MacedoS. AragãoD. MitchellE.P. LindleyP. Structure of the hybrid cluster protein (HCP) from Desulfovibrio desulfuricans ATCC 27774 containing molecules in the oxidized and reduced states Acta. Crystallogr. D. Biol. Crystallogr. 59 2065 2071 2003 10.1107/S0907444903025861 Search in Google Scholar

Maller C., Schroeder E., Eaton P.: Glyceraldehyde3-phosphate dehydrogenase is unlikely to mediate hydrogen peroxide signaling: studies with a novel antidime one sulfenic acid antibody. Antioxid. Redox Sign. 14, 49–60 (2011) MallerC. SchroederE. EatonP. Glyceraldehyde3-phosphate dehydrogenase is unlikely to mediate hydrogen peroxide signaling: studies with a novel antidime one sulfenic acid antibody Antioxid. Redox Sign. 14 49 60 2011 10.1089/ars.2010.314920518697 Search in Google Scholar

Martins D., Bakas I., McIntosh K., English A.M.: Peroxynitrite and hydrogen peroxide elicit similar cellular stress responses mediated by the Ccp1 sensor protein. Free Radic. Biol. Med. 85, 138–147 (2015) MartinsD. BakasI. McIntoshK. EnglishA.M. Peroxynitrite and hydrogen peroxide elicit similar cellular stress responses mediated by the Ccp1 sensor protein Free Radic. Biol. Med. 85 138 147 2015 10.1016/j.freeradbiomed.2015.04.01025881547 Search in Google Scholar

Mehta H.H., Liu Y., Zhang M.Q., Spiro S.: Genome-wide analysis of the response to nitric oxide in uropathogenic Escherichia coli CFT073. Microb. Genom. 1, e000031 (2015) MehtaH.H. LiuY. ZhangM.Q. SpiroS. Genome-wide analysis of the response to nitric oxide in uropathogenic Escherichia coli CFT073 Microb. Genom. 1 e000031 2015 10.1099/mgen.0.000031532062128348816 Search in Google Scholar

Meng Q., Yin J., Jin M., Gao H.: Distinct nitrite and nitric oxide physiologies in Escherichia coli and Shewanella oneidensis. Appl. Environ. Microbiol. 84, e00559–18 (2018) MengQ. YinJ. JinM. GaoH. Distinct nitrite and nitric oxide physiologies in Escherichia coli and Shewanella oneidensis Appl. Environ. Microbiol. 84 e00559 18 2018 10.1128/AEM.00559-18598107829654177 Search in Google Scholar

Mills P.C., Rowley G., Spiro S., Hinton J.C.D., Richardson D.J.: A combination of cytochrome c nitrite reductase (NrfA) and flavorubredoxin (NorV) protects Salmonella enterica serovar Typhimurium against killing by NO in anoxic environments. Microbiology, 154, 1218–1228 (2008) MillsP.C. RowleyG. SpiroS. HintonJ.C.D. RichardsonD.J. A combination of cytochrome c nitrite reductase (NrfA) and flavorubredoxin (NorV) protects Salmonella enterica serovar Typhimurium against killing by NO in anoxic environments Microbiology 154 1218 1228 2008 10.1099/mic.0.2007/014290-018375814 Search in Google Scholar

Molodtsov V., Nawarathne I.N., Scharf N.T., Kirchhoff P.D., Showalter H.D., Garcia G.A., Murakami K.S.: X-ray crystal structure of the Escherichia coli RNA polymerase in complex with Benzoxazinorifamycin. J. Med. Chem. 56, 4758–4763 (2013) MolodtsovV. NawarathneI.N. ScharfN.T. KirchhoffP.D. ShowalterH.D. GarciaG.A. MurakamiK.S. X-ray crystal structure of the Escherichia coli RNA polymerase in complex with Benzoxazinorifamycin J. Med. Chem. 56 4758 4763 2013 10.1021/jm4004889374529923679862 Search in Google Scholar

Mukhopadhyay P., Zheng M., Bedzyk L.A., LaRossa R.A., Storz G.: Prominent roles of the NorR and Fur regulators in the Escherichia coli transcriptional response to reactive nitrogen species. Proc. Natl. Acad. Sci. USA, 101, 745–750 (2004) MukhopadhyayP. ZhengM. BedzykL.A. LaRossaR.A. StorzG. Prominent roles of the NorR and Fur regulators in the Escherichia coli transcriptional response to reactive nitrogen species Proc. Natl. Acad. Sci. USA 101 745 750 2004 10.1073/pnas.030774110032175214718666 Search in Google Scholar

Nilavongse A., Brondijk T.H.C., Overton T.W., Richardson D.J., Leach E.R., Cole J.A.: The NapF protein of the Escherichia coli periplasmic nitrate reductase system: demonstration of a cytoplasmic location and interaction with the catalytic subunit NapA. Microbiology, 152, 3227–3237 (2006) NilavongseA. BrondijkT.H.C. OvertonT.W. RichardsonD.J. LeachE.R. ColeJ.A. The NapF protein of the Escherichia coli periplasmic nitrate reductase system: demonstration of a cytoplasmic location and interaction with the catalytic subunit NapA Microbiology 152 3227 3237 2006 10.1099/mic.0.29157-017074894 Search in Google Scholar

Paolocci N., Katori T., Champion H.C., St John M.E., Miranda K.M., Fukuto J.M., Wink D.A., Kass D.A.: Positive ino-tropic and lusitropic effects of nitroxyl (HNO/NO) in failing hearts: independence from β-adrenergic signaling. Proc. Natl. Acad. Sci. USA, 100, 5537–5542 (2003) PaolocciN. KatoriT. ChampionH.C. St JohnM.E. MirandaK.M. FukutoJ.M. WinkD.A. KassD.A. Positive ino-tropic and lusitropic effects of nitroxyl (HNO/NO) in failing hearts: independence from β-adrenergic signaling Proc. Natl. Acad. Sci. USA 100 5537 5542 2003 10.1073/pnas.093730210015438012704230 Search in Google Scholar

Periago, P. M., van Schaik, W., Abee, T., Wouters, J. A.: Identification of proteins involved in the heat stress response of Bacillus cereus ATCC 14579. Appl. Environ. Microbiol. 68, 3486–3495 (2002) PeriagoP. M. van SchaikW. AbeeT. WoutersJ. A. Identification of proteins involved in the heat stress response of Bacillus cereus ATCC 14579 Appl. Environ. Microbiol. 68 3486 3495 2002 10.1128/AEM.68.7.3486-3495.200212681112089032 Search in Google Scholar

Poock S.R., Leach E.R., Moir J.W., Cole J.A., Richardson D.J.: Respiratory detoxification of nitric oxide by the cytochrome c nitrite reductase of Escherichia coli. J. Biol. Chem. 277, 23664–23669 (2002) PoockS.R. LeachE.R. MoirJ.W. ColeJ.A. RichardsonD.J. Respiratory detoxification of nitric oxide by the cytochrome c nitrite reductase of Escherichia coli J. Biol. Chem. 277 23664 23669 2002 10.1074/jbc.M20073120011960983 Search in Google Scholar

Poole R.K.: Nitric oxide and nitrosative stress tolerance in bacteria. Biochem. Soc. Trans. 33, 176–180 (2005) PooleR.K. Nitric oxide and nitrosative stress tolerance in bacteria Biochem. Soc. Trans. 33 176 180 2005 10.1042/BST033017615667299 Search in Google Scholar

Poole R.K.: Flavohaemoglobin: the pre-eminent nitric oxide-detoxifying machine of microorganisms. F1000Res. 9, F1000 Rev-7 (2020) PooleR.K. Flavohaemoglobin: the pre-eminent nitric oxide-detoxifying machine of microorganisms F1000Res. 9 F1000 Rev-7 2020 10.12688/f1000research.20563.1695032131956400 Search in Google Scholar

Poole R.K., Hughes M.N.: New functions for the ancient globin family: bacterial responses to nitric oxide and nitrosative stress. Mol. Microbiol. 36, 775–783 (2000) PooleR.K. HughesM.N. New functions for the ancient globin family: bacterial responses to nitric oxide and nitrosative stress Mol. Microbiol. 36 775 783 2000 10.1046/j.1365-2958.2000.01889.x10844666 Search in Google Scholar

Radi R.: Nitric oxide oxidants and protein tyrosine nitration. Proc. Natl. Acad. Sci. USA, 101, 4003–4008 (2004) RadiR. Nitric oxide oxidants and protein tyrosine nitration Proc. Natl. Acad. Sci. USA 101 4003 4008 2004 10.1073/pnas.030744610138468515020765 Search in Google Scholar

Radi R.: Protein tyrosine nitration: Biochemical mechanisms and structural basis of its functional effects. Acc. Chem. Res. 46, 550–559 (2013) RadiR. Protein tyrosine nitration: Biochemical mechanisms and structural basis of its functional effects Acc. Chem. Res. 46 550 559 2013 10.1021/ar300234c357798123157446 Search in Google Scholar

Radi R.: Oxygen radicals, nitric oxide, and peroxynitrite: Redox pathways in molecular medicine. Proc. Natl. Acad. Sci. USA, 115, 5839–5848 (2018) RadiR. Oxygen radicals, nitric oxide, and peroxynitrite: Redox pathways in molecular medicine Proc. Natl. Acad. Sci. USA 115 5839 5848 2018 10.1073/pnas.1804932115600335829802228 Search in Google Scholar

Robinson J.L., Brynildsen M.P.: Discovery and dissection of metabolic oscillations in the microaerobic nitric oxide response network of Escherichia coli. Proc. Natl. Acad. Sci. USA, 113, E1757–E1766 (2016) RobinsonJ.L. BrynildsenM.P. Discovery and dissection of metabolic oscillations in the microaerobic nitric oxide response network of Escherichia coli Proc. Natl. Acad. Sci. USA 113 E1757 E1766 2016 10.1073/pnas.1521354113481270326951670 Search in Google Scholar

Romão C.V. & Frazão C. et al.: Structure of Escherichia coli Flavodiiron Nitric Oxide Reductase. J. Mol. Biol. 428, 4686–4707 (2016) RomãoC.V. FrazãoC. Structure of Escherichia coli Flavodiiron Nitric Oxide Reductase J. Mol. Biol. 428 4686 4707 2016 10.1016/j.jmb.2016.10.00827725182 Search in Google Scholar

Sahoo R., Bhattacharjee A., Majumdar U., Ray S.S., Dutta T., Ghosh S.: A novel role of catalase in detoxification of peroxynitrite in S. cerevisiae. Biochem. Biophys. Res. Comm. 385, 507–511 (2009) SahooR. BhattacharjeeA. MajumdarU. RayS.S. DuttaT. GhoshS. A novel role of catalase in detoxification of peroxynitrite in S. cerevisiae Biochem. Biophys. Res. Comm. 385 507 511 2009 10.1016/j.bbrc.2009.05.06219463791 Search in Google Scholar

Schade B., Jansen G., Whiteway M., Entian K.D., Thomas D.Y.: Cold adaptation in budding yeast. Mol. Biol. Cell. 15, 5492–5502 (2004) SchadeB. JansenG. WhitewayM. EntianK.D. ThomasD.Y. Cold adaptation in budding yeast Mol. Biol. Cell. 15 5492 5502 2004 10.1091/mbc.e04-03-016753202815483057 Search in Google Scholar

Schairer D.O., Chouake J.S., Nosanchuk J.D., Friedman A.J.: The potential of nitric oxide releasing therapies as antimicrobial agents. Virulence, 3, 271–279 (2012) SchairerD.O. ChouakeJ.S. NosanchukJ.D. FriedmanA.J. The potential of nitric oxide releasing therapies as antimicrobial agents Virulence 3 271 279 2012 10.4161/viru.20328344283922546899 Search in Google Scholar

Sengupta R., Holmgren A.: Thioredoxin and thioredoxin reductase in relation to reversible s-nitrosylation. Antioxid. Redox Sign. 18, 259–269 (2013) SenguptaR. HolmgrenA. Thioredoxin and thioredoxin reductase in relation to reversible s-nitrosylation Antioxid. Redox Sign. 18 259 269 2013 10.1089/ars.2012.471622702224 Search in Google Scholar

Shepherd M., & Schembri MA. et. al.: The cytochrome bd-I respiratory oxidase augments survival of multidrug-resistant Escherichia coli during infection. Sci. Rep. 6, 35285 (2016) ShepherdM. SchembriMA. The cytochrome bd-I respiratory oxidase augments survival of multidrug-resistant Escherichia coli during infection Sci. Rep. 6 35285 2016 10.1038/srep35285507330827767067 Search in Google Scholar

Shimizu T., Matsumoto A., Noda M.: Cooperative roles of nitric oxide-metabolizing enzymes to counteract nitrosative stress in enterohemorrhagic Escherichia coli. Infect. Immun. 87, e00334–19 (2019) ShimizuT. MatsumotoA. NodaM. Cooperative roles of nitric oxide-metabolizing enzymes to counteract nitrosative stress in enterohemorrhagic Escherichia coli Infect. Immun. 87 e00334 19 2019 10.1128/IAI.00334-19670461331209149 Search in Google Scholar

Sigfrid L.A., Cunningham J.M., Beeharry N., Lortz S., Tiedge M., Lenzen S., Carlsson C., Green I.C.: Cytokines and nitric oxide inhibit the enzyme activity of catalase but not its protein or mRNA expression in insulin-producing cells. J. Mol. Endocrinol. 31, 509–518 (2003) SigfridL.A. CunninghamJ.M. BeeharryN. LortzS. TiedgeM. LenzenS. CarlssonC. GreenI.C. Cytokines and nitric oxide inhibit the enzyme activity of catalase but not its protein or mRNA expression in insulin-producing cells J. Mol. Endocrinol. 31 509 518 2003 10.1677/jme.0.0310509 Search in Google Scholar

Silva G., LeGall J., Xavier A.V., Teixeira M., Rodrigues-Pousada C.: Molecular characterization of Desulfovibrio gigas neelaredoxin, a protein involved in oxygen detoxification in anaerobes. J. Bacteriol. 183, 4413–4420 (2001) SilvaG. LeGallJ. XavierA.V. TeixeiraM. Rodrigues-PousadaC. Molecular characterization of Desulfovibrio gigas neelaredoxin, a protein involved in oxygen detoxification in anaerobes J. Bacteriol. 183 4413 4420 2001 10.1128/JB.183.4.4413-4420.2001 Search in Google Scholar

Sobko T., Huang L., Midtvedt T., Norin E., Gustafsson L.E., Norman M., Jansson E.A., Lundberg J.O.: Generation of NO by probiotic bacteria in the gastro intestinal tract. Free Radic. Biol. Med. 41, 985–991 (2006) SobkoT. HuangL. MidtvedtT. NorinE. GustafssonL.E. NormanM. JanssonE.A. LundbergJ.O. Generation of NO by probiotic bacteria in the gastro intestinal tract Free Radic. Biol. Med. 41 985 991 2006 10.1016/j.freeradbiomed.2006.06.020 Search in Google Scholar

Sobko T., Reinders C.I., Jansson E., Norin E., Midtvedt T., Lundberg J.O.: Gastrointestinal bacteria generate nitric oxide from nitrate and nitrite. Nitric Oxide, 13, 272–278 (2005) SobkoT. ReindersC.I. JanssonE. NorinE. MidtvedtT. LundbergJ.O. Gastrointestinal bacteria generate nitric oxide from nitrate and nitrite Nitric Oxide 13 272 278 2005 10.1016/j.niox.2005.08.002 Search in Google Scholar

Song M., Husain M., Jones-Carson J., Liu L., Henard C.A., Vázquez-Torres A.: Low molecular weight thiol-dependent anti-oxidant and antinitrosative defenses in Salmonella pathogenesis. Mol. Microbiol. 87, 609–622 (2013) SongM. HusainM. Jones-CarsonJ. LiuL. HenardC.A. Vázquez-TorresA. Low molecular weight thiol-dependent anti-oxidant and antinitrosative defenses in Salmonella pathogenesis Mol. Microbiol. 87 609 622 2013 10.1111/mmi.12119 Search in Google Scholar

Spek E.J., Wright T.L., Stitt M.S., Taghizadeh N.R., Tannenbaum S.R., Marinus M.G., Engelward B.P.: Recombinational repair is critical for survival of Escherichia coli exposed to nitric oxide. J. Bacteriol. 183, 131–138 (2001) SpekE.J. WrightT.L. StittM.S. TaghizadehN.R. TannenbaumS.R. MarinusM.G. EngelwardB.P. Recombinational repair is critical for survival of Escherichia coli exposed to nitric oxide J. Bacteriol. 183 131 138 2001 10.1128/JB.183.1.131-138.2001 Search in Google Scholar

Spence S.A, Clark V.L, Isabella V.M.: The role of catalase in gonococ cal resistance to peroxynitrite. Microbiology, 158, 560–570 (2012) SpenceS.A ClarkV.L IsabellaV.M. The role of catalase in gonococ cal resistance to peroxynitrite Microbiology 158 560 570 2012 10.1099/mic.0.053686-0 Search in Google Scholar

Stepniewska, Z., Wolińska, A., Ziomek, J.: Response of soil catalase activity to chromium contamination. J. Environ. Sci. China. 21, 1142–1147 (2009) StepniewskaZ. WolińskaA. ZiomekJ. Response of soil catalase activity to chromium contamination J. Environ. Sci. China. 21 1142 1147 2009 10.1016/S1001-0742(08)62394-3 Search in Google Scholar

Stone J.R., Yang S.: Hydrogen peroxide: a signaling messenger. Antioxid. Redox Sign. 8, 243–270 (2006) StoneJ.R. YangS. Hydrogen peroxide: a signaling messenger Antioxid. Redox Sign. 8 243 270 2006 10.1089/ars.2006.8.24316677071 Search in Google Scholar

Svensson L., Poljakovic M., Säve S., Gilberthorpe N., Schön T., Strid S., Corker H., Poole R.K., Persson K.: Role of flavohemoglobin in combating nitrosative stress in uropathogenic Escherichia coli – implications for urinary tract infection. Microb. Pathog. 49, 59–66 (2010) SvenssonL. PoljakovicM. SäveS. GilberthorpeN. SchönT. StridS. CorkerH. PooleR.K. PerssonK. Role of flavohemoglobin in combating nitrosative stress in uropathogenic Escherichia coli – implications for urinary tract infection Microb. Pathog. 49 59 66 2010 10.1016/j.micpath.2010.04.00120399845 Search in Google Scholar

Tiso M., Schechter A.N.: Nitrate reduction to nitrite, nitric oxide and ammonia by gut bacteria under physiological conditions. Plos One, 10, e0127490 (2015) 11737–11745 (2002) TisoM. SchechterA.N. Nitrate reduction to nitrite, nitric oxide and ammonia by gut bacteria under physiological conditions Plos One 10 e0127490 2015 11737 11745 2002 10.1371/journal.pone.0127490442271425945504 Search in Google Scholar

van den Berg W.A., Hagen W.R., van Dongen W.M.: The hybrid-cluster protein (‘prismane protein’) from Escherichia coli Characterization of the hybrid-cluster protein redox properties of the [2Fe-2S] and [4Fe-2S-2O] clusters and identification of an associated NADH oxidoreductase containing FAD and [2Fe-2S]. Eur. J. Biochem. 267, 666–676 (2000) van den BergW.A. HagenW.R. van DongenW.M. The hybrid-cluster protein (‘prismane protein’) from Escherichia coli Characterization of the hybrid-cluster protein redox properties of the [2Fe-2S] and [4Fe-2S-2O] clusters and identification of an associated NADH oxidoreductase containing FAD and [2Fe-2S] Eur. J. Biochem. 267 666 676 2000 10.1046/j.1432-1327.2000.01032.x10651802 Search in Google Scholar

van Wonderen J.H., Burlat B., Richardson D.J., Cheesman M.R., Butt J.N.: The nitric oxide reductase activity of cytochrome c nitrite reductase from Escherichia coli. J. Biol. Chem. 283, 9587–9594 (2008) van WonderenJ.H. BurlatB. RichardsonD.J. CheesmanM.R. ButtJ.N. The nitric oxide reductase activity of cytochrome c nitrite reductase from Escherichia coli J. Biol. Chem. 283 9587 9594 2008 10.1074/jbc.M70909020018245085 Search in Google Scholar

Veal E.A., Day A.M., Morgan B.A.: Hydrogen peroxide sensing and signaling. Mol. Cell. 26, 1–14 (2007) VealE.A. DayA.M. MorganB.A. Hydrogen peroxide sensing and signaling Mol. Cell. 26 1 14 2007 10.1016/j.molcel.2007.03.01617434122 Search in Google Scholar

Veal E.A., Ross S.J., Malakasi P., Peacock E., Morgan B.A.: Ybp1 is required for the hydrogen peroxide-induced oxidation of the Yap1 transcription factor. J. Biol. Chem. 278, 30896–30904 (2003) VealE.A. RossS.J. MalakasiP. PeacockE. MorganB.A. Ybp1 is required for the hydrogen peroxide-induced oxidation of the Yap1 transcription factor J. Biol. Chem. 278 30896 30904 2003 10.1074/jbc.M30354220012743123 Search in Google Scholar

Vicente J.B., Teixeira M.: Redox and spectroscopic properties of the Escherichia coli nitric oxide-detoxifying system involving flavorubredoxin and its NADH-oxidizing redox partner. J. Biol. Chem. 280, 34599–34608 (2005) VicenteJ.B. TeixeiraM. Redox and spectroscopic properties of the Escherichia coli nitric oxide-detoxifying system involving flavorubredoxin and its NADH-oxidizing redox partner J. Biol. Chem. 280 34599 34608 2005 10.1074/jbc.M50634920016100392 Search in Google Scholar

Vijayadeep C., Sastry P.S.: Effect of heavy metal uptake by E. coli and Bacillus sps. J. Bioremediat. Biodegrad. 5, 1–3 (2014) VijayadeepC. SastryP.S. Effect of heavy metal uptake by E. coli and Bacillus sps. J. Bioremediat. Biodegrad. 5 1 3 2014 10.4172/2155-6199.1000238 Search in Google Scholar

Vine C.E., Cole J.A.: Nitrosative stress in Escherichia coli: reduction of nitric oxide. Biochem. Soc. Trans. 39, 213–215 (2011) VineC.E. ColeJ.A. Nitrosative stress in Escherichia coli: reduction of nitric oxide Biochem. Soc. Trans. 39 213 215 2011 10.1042/BST039021321265775 Search in Google Scholar

Wang J., Vine C.E., Balasiny B.K., Rizk J., Bradley C.L., Tinajero-Trejo M., Poole R.K., Bergaust L.L., Bakken L.R., Cole J.A.: The roles of the hybrid cluster protein HCP and its reductase Hcr in high affinity nitric oxide reduction that protects anaerobic cultures of Escherichia coli against nitrosative stress. Mol. Microbiol. 100, 877–892 (2016) WangJ. VineC.E. BalasinyB.K. RizkJ. BradleyC.L. Tinajero-TrejoM. PooleR.K. BergaustL.L. BakkenL.R. ColeJ.A. The roles of the hybrid cluster protein HCP and its reductase Hcr in high affinity nitric oxide reduction that protects anaerobic cultures of Escherichia coli against nitrosative stress Mol. Microbiol. 100 877 892 2016 10.1111/mmi.1335626879449 Search in Google Scholar

Weiss B.: Evidence for mutagenesis by nitric oxide during nitrate metabolism in Escherichia coli. J. Bacteriol. 188, 829–833 (2006) WeissB. Evidence for mutagenesis by nitric oxide during nitrate metabolism in Escherichia coli J. Bacteriol. 188 829 833 2006 10.1128/JB.188.3.829-833.2006134733516428385 Search in Google Scholar

Wolfe M.T., Heo J., Garavelli J.S., Ludden P.W.: Hydroxylamine reductase activity of the hybrid cluster protein from Escherichia coli. J. Bacteriol. 184, 5898–5902 (2002) WolfeM.T. HeoJ. GaravelliJ.S. LuddenP.W. Hydroxylamine reductase activity of the hybrid cluster protein from Escherichia coli J. Bacteriol. 184 5898 5902 2002 10.1128/JB.184.21.5898-5902.2002 Search in Google Scholar

Wood J. M.: Bacterial responses to osmotic challenges. J. Gen. Physiol. 145, 381–388 (2015) WoodJ. M. Bacterial responses to osmotic challenges J. Gen. Physiol. 145 381 388 2015 10.1085/jgp.201411296 Search in Google Scholar

Wu G., Wainwright L.M., Membrillo-Hernandez J., Poole R.K.: Bacterial haemoglobins: old proteins with “new” functions? Roles in respiratory and nitric oxide metabolism. In D. Zannoni (ed.), Respiration in Archaea and Bacteria. Kluwer Academic Publishers, Dordrecht, The Netherlands (2004) p. 251–286 WuG. WainwrightL.M. Membrillo-HernandezJ. PooleR.K. Bacterial haemoglobins: old proteins with “new” functions? Roles in respiratory and nitric oxide metabolism In ZannoniD. (ed.), Respiration in Archaea and Bacteria Kluwer Academic Publishers Dordrecht, The Netherlands 2004 251 286 Search in Google Scholar

Wu G., Wainwright L.M., Poole R.K.: Microbial globins. Adv. Microb. Physiol. 47, 255–310 (2003) WuG. WainwrightL.M. PooleR.K. Microbial globins Adv. Microb. Physiol. 47 255 310 2003 10.1016/S0065-2911(03)47005-7 Search in Google Scholar

Yamakura F., Kawasaki H.: Post-translational modifications of superoxide dismutase. Biochim. Biophys. Acta, 1804, 318–325 (2010) YamakuraF. KawasakiH. Post-translational modifications of superoxide dismutase Biochim. Biophys. Acta. 1804 318 325 2010 10.1016/j.bbapap.2009.10.01019837190 Search in Google Scholar

Yousef A., Courtney P.: Basics of stress adaptation and implications in new-generation foods. Microbial Stress Adaptation and Food Safety, Chapter 1, 14–15 (2002) YousefA. CourtneyP. Basics of stress adaptation and implications in new-generation foods Microbial Stress Adaptation and Food Safety Chapter 1, 14 15 2002 10.1201/9781420012828.ch1 Search in Google Scholar

Zeng H., Spencer N.Y., Hogg N.: Metabolism of S-nitrosoglutathione by endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 281, H432–H439 (2001) ZengH. SpencerN.Y. HoggN. Metabolism of S-nitrosoglutathione by endothelial cells Am. J. Physiol. Heart Circ. Physiol. 281 H432 H439 2001 10.1152/ajpheart.2001.281.1.H43211406512 Search in Google Scholar

eISSN:
2545-3149
Języki:
Angielski, Polski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Life Sciences, Microbiology and Virology