Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of LodzLodz, Poland
Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of LodzLodz, Poland
Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of LodzLodz, Poland
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Abate G, Hamzabegovic F, Eickhoff CS et al. (2019) BCG vaccination induces M. avium and M. abscessus cross-protective immunity. Front Immunol 10:234. https://doi.org/10.3389/fimmu.2019.00234AbateGHamzabegovicFEickhoffCS2019BCG vaccination induces M. avium and M. abscessus cross-protective immunityFront Immunol10234https://doi.org/10.3389/fimmu.2019.00234Search in Google Scholar
Abdalla CM, de Oliveira ZN, Sotto MN et al. (2009) Polymerase chain reaction compared to other laboratory findings and to clinical evaluation in the diagnosis of cutaneous tuberculosis and atypical mycobacteria skin infection. Int J Dermatol 48:27–35. https://doi.org/10.1111/j.1365-4632.2009.03807.xAbdallaCMde OliveiraZNSottoMN2009Polymerase chain reaction compared to other laboratory findings and to clinical evaluation in the diagnosis of cutaneous tuberculosis and atypical mycobacteria skin infectionInt J Dermatol482735https://doi.org/10.1111/j.1365-4632.2009.03807.xSearch in Google Scholar
Abudaff NN, Beam E (2017) Mycobacterium arupense: A review article on an emerging potential pathogen in the Mycobacterium terrae complex. J Clin Tuberc Other Mycobact Dis 10:1–5. https://doi.org/10.1016/j.jctube.2017.11.001AbudaffNNBeamE2017Mycobacterium arupense: A review article on an emerging potential pathogen in the Mycobacterium terrae complexJ Clin Tuberc Other Mycobact Dis1015https://doi.org/10.1016/j.jctube.2017.11.001Search in Google Scholar
Ahmed I, Tiberi S, Farooqi J et al. (2020) Non-tuberculous mycobacterial infections – A neglected and emerging problem. Int J Infect Dis 92S:S46–S50. https://doi.org/10.1016/j.ijid.2020.02.022AhmedITiberiSFarooqiJ2020Non-tuberculous mycobacterial infections – A neglected and emerging problemInt J Infect Dis92SS46S50https://doi.org/10.1016/j.ijid.2020.02.022Search in Google Scholar
Akram SM, Rawla P (2024) Mycobacterium kansasii infection. StatPearls Publishing, Treasure Island, FL. https://www.ncbi.nlm.nih.gov/books/NBK430906/AkramSMRawlaP2024Mycobacterium kansasii infectionStatPearls PublishingTreasure Island, FLhttps://www.ncbi.nlm.nih.gov/books/NBK430906/Search in Google Scholar
Antczak M, Dadura K, Lewandowska K, Dziadek J (2017) [Nontuberculous mycobacteria – Why treatment is so difficult?]. Kosmos 66:31–40.AntczakMDaduraKLewandowskaKDziadekJ2017[Nontuberculous mycobacteria – Why treatment is so difficult?]Kosmos663140Search in Google Scholar
Aragaw WW, Cotroneo N, Stokes S et al. (2022) In vitro resistance against DNA gyrase inhibitor SPR719 in Mycobacterium avium and Mycobacterium abscessus. Microbiol Spectr 10:e0132121. https://doi.org/10.1128/spectrum.01321-21AragawWWCotroneoNStokesS2022In vitro resistance against DNA gyrase inhibitor SPR719 in Mycobacterium avium and Mycobacterium abscessusMicrobiol Spectr10e0132121https://doi.org/10.1128/spectrum.01321-21Search in Google Scholar
Arend SM, van Soolingen D, Ottenhoff TH (2009) Diagnosis and treatment of lung infection with nontuberculous mycobacteria. Curr Opin Pulm Med 15:201–208. https://doi.org/10.1097/MCP.0b013e3283292679ArendSMvan SoolingenDOttenhoffTH2009Diagnosis and treatment of lung infection with nontuberculous mycobacteriaCurr Opin Pulm Med15201208https://doi.org/10.1097/MCP.0b013e3283292679Search in Google Scholar
Ariza-Heredia EJ, Dababneh AS, Wilhelm MP et al. (2011) Mycobacterium wolinskyi: A case series and review of the literature. Diagn Microbiol Infect Dis 71:421–427. https://doi.org/10.1016/j.diagmicrobio.2011.08.005Ariza-HerediaEJDababnehASWilhelmMP2011Mycobacterium wolinskyi: A case series and review of the literatureDiagn Microbiol Infect Dis71421427https://doi.org/10.1016/j.diagmicrobio.2011.08.005Search in Google Scholar
Bakuła Z, Kościuch J, Safianowska A et al. (2018) Clinical, radiological and molecular features of Mycobacterium kansasii pulmonary disease. Respir Med 139:91–100. https://doi.org/10.1016/j.rmed.2018.05.007BakułaZKościuchJSafianowskaA2018Clinical, radiological and molecular features of Mycobacterium kansasii pulmonary diseaseRespir Med13991100https://doi.org/10.1016/j.rmed.2018.05.007Search in Google Scholar
Bhanushali J, Jadhav U, Ghewade B et al. (2023) Unveiling the clinical diversity in nontuberculous mycobacteria (NTM) infections: A comprehensive review. Cureus 15:e48270. https://doi.org/10.7759/cureus.48270BhanushaliJJadhavUGhewadeB2023Unveiling the clinical diversity in nontuberculous mycobacteria (NTM) infections: A comprehensive reviewCureus15e48270https://doi.org/10.7759/cureus.48270Search in Google Scholar
Blanc SM, Robinson D, Fahrenfeld NL (2021) Potential for nontuberculous mycobacteria proliferation in natural and engineered water systems due to climate change: A literature review. City Environ Interact 11:100070. https://doi.org/10.1016/j.cacint.2021.100070BlancSMRobinsonDFahrenfeldNL2021Potential for nontuberculous mycobacteria proliferation in natural and engineered water systems due to climate change: A literature reviewCity Environ Interact11100070https://doi.org/10.1016/j.cacint.2021.100070Search in Google Scholar
Boeck L, Burbaud S, Skwark M et al. (2022) Mycobacterium abscessus pathogenesis identified by phenogenomic analyses. Nat Microbiol 7:1431–1441. https://doi.org/10.1038/s41564-022-01204-xBoeckLBurbaudSSkwarkM2022Mycobacterium abscessus pathogenesis identified by phenogenomic analysesNat Microbiol714311441https://doi.org/10.1038/s41564-022-01204-xSearch in Google Scholar
Brown BA, Springer B, Steingrube VA et al. (1999) Mycobacterium wolinskyi sp. nov. and Mycobacterium goodii sp. nov., two new rapidly growing species related to Mycobacterium smegmatis and associated with human wound infections: A cooperative study from the International Working Group on Mycobacterial Taxonomy. Int J Syst Bacteriol 49(Pt 4):1493–1511. https://doi.org/10.1099/00207713-49-4-1493BrownBASpringerBSteingrubeVA1999Mycobacterium wolinskyi sp. nov. and Mycobacterium goodii sp. nov., two new rapidly growing species related to Mycobacterium smegmatis and associated with human wound infections: A cooperative study from the International Working Group on Mycobacterial TaxonomyInt J Syst Bacteriol49Pt 414931511https://doi.org/10.1099/00207713-49-4-1493Search in Google Scholar
Buchanan R, Agarwal A, Mathai E et al. (2020) Mycobacterium chimaera: A novel pathogen with potential risk to cardiac surgical patients. Natl Med J India 33:284–287. https://doi.org/10.4103/0970-258X.317473BuchananRAgarwalAMathaiE2020Mycobacterium chimaera: A novel pathogen with potential risk to cardiac surgical patientsNatl Med J India33284287https://doi.org/10.4103/0970-258X.317473Search in Google Scholar
Chai J, Han X, Mei Q et al. (2022) Clinical characteristics and mortality of non-tuberculous mycobacterial infection in immunocompromised vs. immunocompetent hosts. Front Med (Lausanne) 9:884446. https://doi.org/10.3389/fmed.2022.884446ChaiJHanXMeiQ2022Clinical characteristics and mortality of non-tuberculous mycobacterial infection in immunocompromised vs. immunocompetent hostsFront Med (Lausanne)9884446https://doi.org/10.3389/fmed.2022.884446Search in Google Scholar
Chan WW, Murray MC, Tang P et al. (2011) Mycobacterium heckeshornense peritonitis in a peritoneal dialysis patient: A case report and review of the literature. Clin Microbiol Infect 17:1262–1264. https://doi.org/10.1111/j.1469-0691.2010.03449ChanWWMurrayMCTangP2011Mycobacterium heckeshornense peritonitis in a peritoneal dialysis patient: A case report and review of the literatureClin Microbiol Infect1712621264https://doi.org/10.1111/j.1469-0691.2010.03449Search in Google Scholar
Chin KL, Sarmiento ME, Alvarez-Cabrera N et al. (2020) Pulmonary non-tuberculous mycobacterial infections: Current state and future management. Eur J Clin Microbiol Infect Dis 39:799–826. https://doi.org/10.1007/s10096-019-03771-0ChinKLSarmientoMEAlvarez-CabreraN2020Pulmonary non-tuberculous mycobacterial infections: Current state and future managementEur J Clin Microbiol Infect Dis39799826https://doi.org/10.1007/s10096-019-03771-0Search in Google Scholar
Chotmongkol V, Kosallavat S, Sawanyawisuth K et al. (2024) Evaluation of seegeneanyplex MTB/NTM real-time detection assay for diagnosis of tuberculous meningitis. Orphanet J Rare Dis 19:7. https://doi.org/10.1186/s13023-023-03009-5ChotmongkolVKosallavatSSawanyawisuthK2024Evaluation of seegeneanyplex MTB/NTM real-time detection assay for diagnosis of tuberculous meningitisOrphanet J Rare Dis197https://doi.org/10.1186/s13023-023-03009-5Search in Google Scholar
Cloud JL, Meyer JJ, Pounder JI et al. (2006) Mycobacterium arupense sp. nov., a non-chromogenic bacterium isolated from clinical specimens. Int J Syst Evol Microbiol 56:1413–1418. https://doi.org/10.1099/ijs.0.64194-0CloudJLMeyerJJPounderJI2006Mycobacterium arupense sp. nov., a non-chromogenic bacterium isolated from clinical specimensInt J Syst Evol Microbiol5614131418https://doi.org/10.1099/ijs.0.64194-0Search in Google Scholar
Cooper SK, Ackart DF, Lanni F et al. (2024) Heterogeneity in immune cell composition is associated with Mycobacterium tuberculosis replication at the granuloma level. Front Immunol 15:1427472. https://doi.org/10.3389/fimmu.2024.1427472CooperSKAckartDFLanniF2024Heterogeneity in immune cell composition is associated with Mycobacterium tuberculosis replication at the granuloma levelFront Immunol151427472https://doi.org/10.3389/fimmu.2024.1427472Search in Google Scholar
Cowman S, van Ingen J, Griffith DE et al. (2019) Non-tuberculous mycobacterial pulmonary disease. Eur Respir J 54:1900250. https://doi.org/10.1183/13993003.00250-2019CowmanSvan IngenJGriffithDE2019Non-tuberculous mycobacterial pulmonary diseaseEur Respir J541900250https://doi.org/10.1183/13993003.00250-2019Search in Google Scholar
Cronan MR (2022) In the thick of it: Formation of the tuberculous granuloma and its effects on host and therapeutic responses. Front Immunol 13:820134. https://doi.org/10.3389/fimmu.2022.820134CronanMR2022In the thick of it: Formation of the tuberculous granuloma and its effects on host and therapeutic responsesFront Immunol13820134https://doi.org/10.3389/fimmu.2022.820134Search in Google Scholar
Dahl VN, Mølhave M, Fløe A et al. (2022) Global trends of pulmonary infections with nontuberculous mycobacteria: A systematic review. Int J Infect Dis 125:120–131. https://doi.org/10.1016/j.ijid.2022.10.013DahlVNMølhaveMFløeA2022Global trends of pulmonary infections with nontuberculous mycobacteria: A systematic reviewInt J Infect Dis125120131https://doi.org/10.1016/j.ijid.2022.10.013Search in Google Scholar
Daley CL, Iaccarino JM, Lange C et al. (2020a) Treatment of nontuberculous mycobacterial pulmonary disease: An official ATS/ERS/ESCMID/IDSA clinical practice guideline. Clin Infect Dis 71:905–913. https://doi.org/10.1093/cid/ciaa1125DaleyCLIaccarinoJMLangeC2020aTreatment of nontuberculous mycobacterial pulmonary disease: An official ATS/ERS/ESCMID/IDSA clinical practice guidelineClin Infect Dis71905913https://doi.org/10.1093/cid/ciaa1125Search in Google Scholar
Daley CL, Iaccarino JM, Lange C et al. (2020b) Treatment of nontuberculous mycobacterial pulmonary disease: An official ATS/ERS/ESCMID/IDSA clinical practice guideline. Clin Infect Dis 71:e1–e36. https://doi.org/10.1093/cid/ciaa241DaleyCLIaccarinoJMLangeC2020bTreatment of nontuberculous mycobacterial pulmonary disease: An official ATS/ERS/ESCMID/IDSA clinical practice guidelineClin Infect Dis71e1e36https://doi.org/10.1093/cid/ciaa241Search in Google Scholar
Daley CL, Iaccarino JM, Lange C et al. (2020c) Treatment of nontuberculous mycobacterial pulmonary disease: An official ATS/ERS/ESCMID/IDSA clinical practice guideline. Eur Respir J 56:2000535. https://doi.org/10.1183/13993003.00535-2020DaleyCLIaccarinoJMLangeC2020cTreatment of nontuberculous mycobacterial pulmonary disease: An official ATS/ERS/ESCMID/IDSA clinical practice guidelineEur Respir J562000535https://doi.org/10.1183/13993003.00535-2020Search in Google Scholar
de Man TJ, Perry KA, Lawsin A et al. (2016) Draft genome sequence of Mycobacterium wolinskyi, a rapid-growing species of nontuberculous mycobacteria. Genome Announc 4:e138–e116. https://doi.org/10.1128/genomeA.00138-16de ManTJPerryKALawsinA2016Draft genome sequence of Mycobacterium wolinskyi, a rapid-growing species of nontuberculous mycobacteriaGenome Announc4e138e116https://doi.org/10.1128/genomeA.00138-16Search in Google Scholar
Dedrick RM, Guerrero-Bustamante CA, Garlena RA et al. (2019) Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nat Med 25:730–733. https://doi.org/10.1038/s41591-019-0437-zDedrickRMGuerrero-BustamanteCAGarlenaRA2019Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessusNat Med25730733https://doi.org/10.1038/s41591-019-0437-zSearch in Google Scholar
Degiacomi G, Sammartino JC, Chiarelli LR et al. (2019) Mycobacterium abscessus, an emerging and worrisome pathogen among cystic fibrosis patients. Int J Mol Sci 20:5868. https://doi.org/10.3390/ijms20235868DegiacomiGSammartinoJCChiarelliLR2019Mycobacterium abscessus, an emerging and worrisome pathogen among cystic fibrosis patientsInt J Mol Sci205868https://doi.org/10.3390/ijms20235868Search in Google Scholar
Delghandi MR, El-Matbouli M, Menanteau-Ledouble S (2020) Mycobacteriosis and infections with non-tuberculous mycobacteria in aquatic organisms: A review. Microorganisms 8:1368. https://doi.org/10.3390/microorganisms8091368DelghandiMREl-MatbouliMMenanteau-LedoubleS2020Mycobacteriosis and infections with non-tuberculous mycobacteria in aquatic organisms: A reviewMicroorganisms81368https://doi.org/10.3390/microorganisms8091368Search in Google Scholar
Desai AN, Hurtado R (2021) Nontuberculous mycobacterial infections. The Journal of the American Medical Association (JAMA) 325(15):1574. https://doi.org/10.1001/jama.2020.19062DesaiANHurtadoR2021Nontuberculous mycobacterial infectionsThe Journal of the American Medical Association (JAMA)325151574https://doi.org/10.1001/jama.2020.19062Search in Google Scholar
Dokic A, Peterson E, Arrieta-Ortiz ML et al. (2021) Mycobacterium abscessus biofilms produce an extracellular matrix and have a distinct mycolic acid profile. Cell Surf 7:100051. https://doi.org/10.1016/j.tcsw.2021.100051DokicAPetersonEArrieta-OrtizML2021Mycobacterium abscessus biofilms produce an extracellular matrix and have a distinct mycolic acid profileCell Surf7100051https://doi.org/10.1016/j.tcsw.2021.100051Search in Google Scholar
Etna MP, Giacomini E, Severa M et al. (2014) Pro- and anti-inflammatory cytokines in tuberculosis: A two-edged sword in TB pathogenesis. Semin Immunol 26:543–551. https://doi.org/10.1016/j.smim.2014.09.011EtnaMPGiacominiESeveraM2014Pro- and anti-inflammatory cytokines in tuberculosis: A two-edged sword in TB pathogenesisSemin Immunol26543551https://doi.org/10.1016/j.smim.2014.09.011Search in Google Scholar
Flume PA, Garcia BA, Wilson D et al. (2023) Inhaled nitric oxide for adults with pulmonary non-tuberculous mycobacterial infection. Respir Med 206:107069. https://doi.org/10.1016/j.rmed.2022.107069FlumePAGarciaBAWilsonD2023Inhaled nitric oxide for adults with pulmonary non-tuberculous mycobacterial infectionRespir Med206107069https://doi.org/10.1016/j.rmed.2022.107069Search in Google Scholar
Fukushima K, Miki M, Matsumoto Y et al. (2020) The impact of adjuvant surgical treatment of nontuberculous mycobacterial pulmonary disease on prognosis and outcome. Respir Res 21:153. https://doi.org/10.1186/s12931-020-01420-1FukushimaKMikiMMatsumotoY2020The impact of adjuvant surgical treatment of nontuberculous mycobacterial pulmonary disease on prognosis and outcomeRespir Res21153https://doi.org/10.1186/s12931-020-01420-1Search in Google Scholar
Gaudêncio M, Carvalho A, Bertão MI et al. (2021) Mycobacterium chelonae cutaneous infection: A challenge for an internist. Eur J Case Rep Intern Med 8:003013. https://doi.org/10.12890/2021_003013GaudêncioMCarvalhoABertãoMI2021Mycobacterium chelonae cutaneous infection: A challenge for an internistEur J Case Rep Intern Med8003013https://doi.org/10.12890/2021_003013Search in Google Scholar
Gopalaswamy R, Shanmugam S, Mondal R et al. (2020) Of tuberculosis and non-tuberculous mycobacterial infections – A comparative analysis of epidemiology, diagnosis and treatment. J Biomed Sci 27:74. https://doi.org/10.1186/s12929-020-00667-6GopalaswamyRShanmugamSMondalR2020Of tuberculosis and non-tuberculous mycobacterial infections – A comparative analysis of epidemiology, diagnosis and treatmentJ Biomed Sci2774https://doi.org/10.1186/s12929-020-00667-6Search in Google Scholar
Griffith DE, Aksamit T, Brown-Elliott BA et al. (2007) An official ATS/IDSA statement: Diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med 175:367–416. https://doi.org/10.1164/rccm.200604-571STGriffithDEAksamitTBrown-ElliottBA2007An official ATS/IDSA statement: Diagnosis, treatment, and prevention of nontuberculous mycobacterial diseasesAm J Respir Crit Care Med175367416https://doi.org/10.1164/rccm.200604-571STSearch in Google Scholar
Gu Y, Nie W, Huang H et al. (2023) Non-tuberculous mycobacterial disease: Progress and advances in the development of novel candidate and repurposed drugs. Front Cell Infect Microbiol 13:1243457. https://doi.org/10.3389/fcimb.2023.1243457GuYNieWHuangH2023Non-tuberculous mycobacterial disease: Progress and advances in the development of novel candidate and repurposed drugsFront Cell Infect Microbiol131243457https://doi.org/10.3389/fcimb.2023.1243457Search in Google Scholar
Guirado E, Schlesinger LS (2013) Modeling the Mycobacterium tuberculosis granuloma – The critical battlefield in host immunity and disease. Front Immunol 4:98. https://doi.org/10.3389/fimmu.2013.00098GuiradoESchlesingerLS2013Modeling the Mycobacterium tuberculosis granuloma – The critical battlefield in host immunity and diseaseFront Immunol498https://doi.org/10.3389/fimmu.2013.00098Search in Google Scholar
Guler R, Ozturk M, Sabeel S et al. (2021) Targeting molecular inflammatory pathways in granuloma as host-directed therapies for tuberculosis. Front Immunol 12:733853. https://doi.org/10.3389/fimmu.2021.733853GulerROzturkMSabeelS2021Targeting molecular inflammatory pathways in granuloma as host-directed therapies for tuberculosisFront Immunol12733853https://doi.org/10.3389/fimmu.2021.733853Search in Google Scholar
Gunasingam N (2022) Morphology and pathological characteristics of mycobacteria. Mycobact Dis S4:005. https://doi.org/10.35248/2161-1068.22.S4.005GunasingamN2022Morphology and pathological characteristics of mycobacteriaMycobact DisS4005https://doi.org/10.35248/2161-1068.22.S4.005Search in Google Scholar
Gutierrez C, Somoskovi A (2014) Human pathogenic mycobacteria. Ref Module Biomed Sci. Elsevier. https://doi.org/10.1016/B978-0-12-801238-3.00137-9GutierrezCSomoskoviA2014Human pathogenic mycobacteriaRef Module Biomed Sci.Elsevierhttps://doi.org/10.1016/B978-0-12-801238-3.00137-9Search in Google Scholar
Haworth CS, Banks J, Capstick T et al. (2017a) British Thoracic Society guidelines for the management of non-tuberculous mycobacterial pulmonary disease (NTM-PD). Thorax 72(Suppl. 2):ii1–ii64. https://doi.org/10.1136/thoraxjnl-2017-210927HaworthCSBanksJCapstickT2017aBritish Thoracic Society guidelines for the management of non-tuberculous mycobacterial pulmonary disease (NTM-PD)Thorax72Suppl. 2ii1ii64https://doi.org/10.1136/thoraxjnl-2017-210927Search in Google Scholar
Haworth CS, Banks J, Capstick T et al. (2017b) British Thoracic Society Guideline for the management of non-tuberculous mycobacterial pulmonary disease (NTM-PD). BMJ Open Respir Res 4:e000242. https://doi.org/10.1136/bmjresp-2017-000242HaworthCSBanksJCapstickT2017bBritish Thoracic Society Guideline for the management of non-tuberculous mycobacterial pulmonary disease (NTM-PD)BMJ Open Respir Res4e000242https://doi.org/10.1136/bmjresp-2017-000242Search in Google Scholar
Herdman AV, Steele JC Jr (2004) The new mycobacterial species – Emerging or newly distinguished pathogens. Clin Lab Med 24:651–690. https://doi.org/10.1016/j.cll.2004.05.011HerdmanAVSteeleJCJr2004The new mycobacterial species – Emerging or newly distinguished pathogensClin Lab Med24651690https://doi.org/10.1016/j.cll.2004.05.011Search in Google Scholar
Hernández-Meneses M, González-Martin J, Agüero D et al. (2021) Hospital clínic of Barcelona infectious endocarditis team. Mycobacterium wolinskyi: A new non-tuberculous Mycobacterium associated with cardiovascular infections? Infect Dis Ther 10:1073–1080. https://doi.org/10.1007/s40121-021-00416-8Hernández-MenesesMGonzález-MartinJAgüeroD2021Hospital clínic of Barcelona infectious endocarditis team. Mycobacterium wolinskyi: A new non-tuberculous Mycobacterium associated with cardiovascular infections?Infect Dis Ther1010731080https://doi.org/10.1007/s40121-021-00416-8Search in Google Scholar
Hisert KB, Ochoa A, Corley J et al. (2023) GM-CSF is essential for effective macrophage killing of nontuberculous mycobacteria. Am J Respir Crit Care Med 207:A4240. https://doi.org/10.1164/ajrccm-conference.2023.207.1HisertKBOchoaACorleyJ2023GM-CSF is essential for effective macrophage killing of nontuberculous mycobacteriaAm J Respir Crit Care Med207A4240https://doi.org/10.1164/ajrccm-conference.2023.207.1Search in Google Scholar
Hoefsloot W, van Ingen J, Andrejak C et al. (2013) The geographic diversity of nontuberculous mycobacteria isolated from pulmonary samples: An NTM-NET collaborative study. Eur Respir J 42:1604–1613. https://doi.org/10.1183/09031936.00149212HoefslootWvan IngenJAndrejakC2013The geographic diversity of nontuberculous mycobacteria isolated from pulmonary samples: An NTM-NET collaborative studyEur Respir J4216041613https://doi.org/10.1183/09031936.00149212Search in Google Scholar
Honda JR, Hess T, Carlson R et al. (2020) Nontuberculous mycobacteria show differential infectivity and use phospholipids to antagonize LL-37. Am J Respir Cell Mol Biol 62:354–363. https://doi.org/10.1165/rcmb.2018-0278OCHondaJRHessTCarlsonR2020Nontuberculous mycobacteria show differential infectivity and use phospholipids to antagonize LL-37Am J Respir Cell Mol Biol62354363https://doi.org/10.1165/rcmb.2018-0278OCSearch in Google Scholar
Honda JR, Knight V, Chan ED (2015) Pathogenesis and risk factors for nontuberculous mycobacterial lung disease. Clin Chest Med 36:1–11. https://doi.org/10.1016/j.ccm.2014.10.001HondaJRKnightVChanED2015Pathogenesis and risk factors for nontuberculous mycobacterial lung diseaseClin Chest Med36111https://doi.org/10.1016/j.ccm.2014.10.001Search in Google Scholar
Horne D, Skerrett S (2019) Recent advances in nontuberculous mycobacterial lung infections. F1000Res 8:F1000. https://doi.org/10.12688/f1000research.20096.1HorneDSkerrettS2019Recent advances in nontuberculous mycobacterial lung infectionsF1000Res8F1000https://doi.org/10.12688/f1000research.20096.1Search in Google Scholar
Hoy SM (2021) Amikacin liposome inhalation suspension in refractory Mycobacterium avium complex lung disease: A profile of its use. Clin Drug Investig 41:405–412. https://doi.org/10.1007/s40261-021-01010-zHoySM2021Amikacin liposome inhalation suspension in refractory Mycobacterium avium complex lung disease: A profile of its useClin Drug Investig41405412https://doi.org/10.1007/s40261-021-01010-zSearch in Google Scholar
Huang HL, Lu PL, Lee CH et al. (2020) Treatment of pulmonary disease caused by Mycobacterium kansasii. J Formos Med Assoc 119(Suppl. 1):S51–S57. https://doi.org/10.1016/j.jfma.2020.05.018HuangHLLuPLLeeCH2020Treatment of pulmonary disease caused by Mycobacterium kansasiiJ Formos Med Assoc119Suppl. 1S51S57https://doi.org/10.1016/j.jfma.2020.05.018Search in Google Scholar
Jamal F, Hammer MH (2022) Nontuberculous mycobacterial infections. Radiol Clin North Am 60:399–408. https://doi.org/10.1016/j.rcl.2022.01.012JamalFHammerMH2022Nontuberculous mycobacterial infectionsRadiol Clin North Am60399408https://doi.org/10.1016/j.rcl.2022.01.012Search in Google Scholar
Johnson MM, Odell JA (2014) Nontuberculous mycobacterial pulmonary infections. J Thorac Dis 6:210–220. https://doi.org/10.3978/j.issn.2072-1439.2013.12.24JohnsonMMOdellJA2014Nontuberculous mycobacterial pulmonary infectionsJ Thorac Dis6210220https://doi.org/10.3978/j.issn.2072-1439.2013.12.24Search in Google Scholar
Johnston JC, Chiang L, Elwood K (2014) Mycobacterium kansasii. Microbiol Spectr 5. J Thorac Dis 6(3):210–220. https://doi.org/10.3978/j.issn.2072-1439.2013.12.24JohnstonJCChiangLElwoodK2014Mycobacterium kansasii. Microbiol Spectr 5J Thorac Dis63210220https://doi.org/10.3978/j.issn.2072-1439.2013.12.24Search in Google Scholar
Kambali S, Quinonez E, Sharifi A et al. (2021) Pulmonary nontuberculous mycobacterial disease in Florida and association with large-scale natural disasters. BMC Public Health 21:2058. https://doi.org/10.1186/s12889-021-12115-7KambaliSQuinonezESharifiA2021Pulmonary nontuberculous mycobacterial disease in Florida and association with large-scale natural disastersBMC Public Health212058https://doi.org/10.1186/s12889-021-12115-7Search in Google Scholar
Kim BG, Jhun BW, Kim H et al. (2022) Treatment outcomes of Mycobacterium avium complex pulmonary disease according to disease severity. Sci Rep 12:1970. https://doi.org/10.1038/s41598-022-06022-zKimBGJhunBWKimH2022Treatment outcomes of Mycobacterium avium complex pulmonary disease according to disease severitySci Rep121970https://doi.org/10.1038/s41598-022-06022-zSearch in Google Scholar
Kim BJ, Hong SH, Yu HK et al. (2013) Mycobacterium parakoreense sp. nov., a slowly growing non-chromogenic species related to Mycobacterium koreense, isolated from a human clinical specimen. Int J Syst Evol Microbiol 63:2301–2308. https://doi.org/10.1099/ijs.0.045070-0KimBJHongSHYuHK2013Mycobacterium parakoreense sp. nov., a slowly growing non-chromogenic species related to Mycobacterium koreense, isolated from a human clinical specimenInt J Syst Evol Microbiol6323012308https://doi.org/10.1099/ijs.0.045070-0Search in Google Scholar
Kim JY, Lee HW, Yim JJ et al. (2023) Outcomes of adjunctive surgery in patients with nontuberculous mycobacterial pulmonary disease: A systematic review and meta-analysis. Chest 163:763–777. https://doi.org/10.1016/j.chest.2022.09.037KimJYLeeHWYimJJ2023Outcomes of adjunctive surgery in patients with nontuberculous mycobacterial pulmonary disease: A systematic review and meta-analysisChest163763777https://doi.org/10.1016/j.chest.2022.09.037Search in Google Scholar
Kim JY, Park S, Park IK et al. (2021) Outcomes of adjunctive surgery for nontuberculous mycobacterial pulmonary disease. BMC Pulm Med 21:312. https://doi.org/10.1186/s12890-021-01679-0KimJYParkSParkIK2021Outcomes of adjunctive surgery for nontuberculous mycobacterial pulmonary diseaseBMC Pulm Med21312https://doi.org/10.1186/s12890-021-01679-0Search in Google Scholar
Koh WJ (2017) Nontuberculous mycobacteria-overview. Microbiol Spectr 5(1):TNMI7-0024-2016. https://doi.org/10.1128/microbiol-spec.tnmi7-0024-2016KohWJ2017Nontuberculous mycobacteria-overviewMicrobiol Spectr51TNMI7-0024-2016. https://doi.org/10.1128/microbiol-spec.tnmi7-0024-2016Search in Google Scholar
Koh WJ, Moon SM, Kim SY et al. (2017) Outcomes of Mycobacterium avium complex lung disease based on clinical phenotype. Eur Respir J 50:1602503. https://doi.org/10.1183/13993003.02503-2016KohWJMoonSMKimSY2017Outcomes of Mycobacterium avium complex lung disease based on clinical phenotypeEur Respir J501602503https://doi.org/10.1183/13993003.02503-2016Search in Google Scholar
Kumar K, Daley CL, Griffith DE et al. (2022) Management of Mycobacterium avium complex and Mycobacterium abscessus pulmonary disease: Therapeutic advances and emerging treatments. Eur Respir Rev 31:210212. https://doi.org/10.1183/16000617.0212-2021KumarKDaleyCLGriffithDE2022Management of Mycobacterium avium complex and Mycobacterium abscessus pulmonary disease: Therapeutic advances and emerging treatmentsEur Respir Rev31210212https://doi.org/10.1183/16000617.0212-2021Search in Google Scholar
Kumar K, Ponnuswamy A, Capstick TG et al. (2024) Non-tuberculous mycobacterial pulmonary disease (NTM-PD): Epidemiology, diagnosis and multidisciplinary management. Clin Med 24:100017. https://doi.org/10.1016/j.clinme.2024.100017KumarKPonnuswamyACapstickTG2024Non-tuberculous mycobacterial pulmonary disease (NTM-PD): Epidemiology, diagnosis and multidisciplinary managementClin Med24100017https://doi.org/10.1016/j.clinme.2024.100017Search in Google Scholar
Kwak N, Hwang HW, Kim HJ et al. (2022) The association between Bacille Calmette-Guérin vaccination and nontuberculous mycobacterial pulmonary disease. J Korean Med Sci 37:e206. https://doi.org/10.3346/jkms.2022.37.e206KwakNHwangHWKimHJ2022The association between Bacille Calmette-Guérin vaccination and nontuberculous mycobacterial pulmonary diseaseJ Korean Med Sci37e206https://doi.org/10.3346/jkms.2022.37.e206Search in Google Scholar
Larsson LO, Polverino E, Hoefsloot W et al. (2017) Pulmonary disease by non-tuberculous mycobacteria – Clinical management, unmet needs and future perspectives. Expert Rev Respir Med 11:977–989. https://doi.org/10.1080/17476348.2017.1386563LarssonLOPolverinoEHoefslootW2017Pulmonary disease by non-tuberculous mycobacteria – Clinical management, unmet needs and future perspectivesExpert Rev Respir Med11977989https://doi.org/10.1080/17476348.2017.1386563Search in Google Scholar
Laudone TW, Garner L, Kam CW et al. (2021) Novel therapies for treatment of resistant and refractory nontuberculous mycobacterial infections in patients with cystic fibrosis. Pediatr Pulmonol 56(Suppl. 1):S55–S68. https://doi.org/10.1002/ppul.24939LaudoneTWGarnerLKamCW2021Novel therapies for treatment of resistant and refractory nontuberculous mycobacterial infections in patients with cystic fibrosisPediatr Pulmonol56Suppl. 1S55S68https://doi.org/10.1002/ppul.24939Search in Google Scholar
Lee JY, Choi EH (2022) Skin infection caused by Mycobacterium abscessus in a healthy adult. J Mycol Infect 27:38–40. https://doi.org/10.17966/JMI.2022.27.2.38LeeJYChoiEH2022Skin infection caused by Mycobacterium abscessus in a healthy adultJ Mycol Infect273840https://doi.org/10.17966/JMI.2022.27.2.38Search in Google Scholar
Li J, Zhan L, Qin C (2021) The double-sided effects of Mycobacterium bovis bacillus Calmette-Guérin vaccine. NPJ Vaccines 6:14. https://doi.org/10.1038/s41541-020-00278-0LiJZhanLQinC2021The double-sided effects of Mycobacterium bovis bacillus Calmette-Guérin vaccineNPJ Vaccines614https://doi.org/10.1038/s41541-020-00278-0Search in Google Scholar
Loebinger MR (2017) Mycobacterium avium complex infection: Phenotypes and outcomes. Eur Respir J 50:1701380. https://doi.org/10.1183/13993003.01380-2017LoebingerMR2017Mycobacterium avium complex infection: Phenotypes and outcomesEur Respir J501701380https://doi.org/10.1183/13993003.01380-2017Search in Google Scholar
Loebinger MR, Quint JK, van der Laan R et al. (2023) Risk factors for nontuberculous mycobacterial pulmonary disease: A systematic literature review and meta-analysis. Chest 164:1115–1124. https://doi.org/10.1016/j.chest.2023.06.014LoebingerMRQuintJKvan der LaanR2023Risk factors for nontuberculous mycobacterial pulmonary disease: A systematic literature review and meta-analysisChest16411151124https://doi.org/10.1016/j.chest.2023.06.014Search in Google Scholar
Lopeman RC, Harrison J, Desai M et al. (2019) Mycobacterium abscessus: Environmental bacterium turned clinical nightmare. Microorganisms 7:90. https://doi.org/10.3390/microorganisms7030090LopemanRCHarrisonJDesaiM2019Mycobacterium abscessus: Environmental bacterium turned clinical nightmareMicroorganisms790https://doi.org/10.3390/microorganisms7030090Search in Google Scholar
Lu M, Fitzgerald D, Karpelowsky J et al. (2018) Surgery in nontuberculous mycobacteria pulmonary disease. Breathe (Sheff) 14:288–301. https://doi.org/10.1183/20734735.027218LuMFitzgeraldDKarpelowskyJ2018Surgery in nontuberculous mycobacteria pulmonary diseaseBreathe (Sheff)14288301https://doi.org/10.1183/20734735.027218Search in Google Scholar
Meliefste HM, Mudde SE, Ammerman NC et al. (2024) A laboratory perspective on Mycobacterium abscessus biofilm culture, characterization and drug activity testing. Front Microbiol 15:1392606. https://doi.org/10.3389/fmicb.2024.1392606MeliefsteHMMuddeSEAmmermanNC2024A laboratory perspective on Mycobacterium abscessus biofilm culture, characterization and drug activity testingFront Microbiol151392606https://doi.org/10.3389/fmicb.2024.1392606Search in Google Scholar
Mencarini J, Cresci C, Simonetti MT et al. (2017) Non-tuberculous mycobacteria: Epidemiological pattern in a reference laboratory and risk factors associated with pulmonary disease. Epidemiol Infect 145(3):515–522. https://doi.org/10.1017/S0950268816002521MencariniJCresciCSimonettiMT2017Non-tuberculous mycobacteria: Epidemiological pattern in a reference laboratory and risk factors associated with pulmonary diseaseEpidemiol Infect1453515522https://doi.org/10.1017/S0950268816002521Search in Google Scholar
Mercaldo RA, Marshall JE, Cangelosi GA et al. (2023) Environmental risk of nontuberculous mycobacterial infection: Strategies for advancing methodology. Tuberculosis 139:102305. https://doi.org/10.1016/j.tube.2023.102305MercaldoRAMarshallJECangelosiGA2023Environmental risk of nontuberculous mycobacterial infection: Strategies for advancing methodologyTuberculosis139102305https://doi.org/10.1016/j.tube.2023.102305Search in Google Scholar
Moore M, Frerichs JB (1953) An unusual acid-fast infection of the knee with subcutaneous, abscess-like lesions of the gluteal region. J Investig Dermatol 20:133–169. https://doi.org/10.1038/jid.1953.18MooreMFrerichsJB1953An unusual acid-fast infection of the knee with subcutaneous, abscess-like lesions of the gluteal regionJ Investig Dermatol20133169https://doi.org/10.1038/jid.1953.18Search in Google Scholar
Moral MZ, Desai K, Arain AR et al. (2019) Mycobacterium abscessus-associated vertebral osteomyelitis in an immunocompetent patient: A rare case report and literature review. Spinal Cord Ser Cases 5:53. https://doi.org/10.1038/s41394-019-0197-5MoralMZDesaiKArainAR2019Mycobacterium abscessus-associated vertebral osteomyelitis in an immunocompetent patient: A rare case report and literature reviewSpinal Cord Ser Cases553https://doi.org/10.1038/s41394-019-0197-5Search in Google Scholar
Morimoto K, Iwai K, Uchimura K et al. (2014) A steady increase in nontuberculous mycobacteriosis mortality and estimated prevalence in Japan. Ann Am Thorac Soc 11:1–8. https://doi.org/10.1513/AnnalsATS.201303-067OCMorimotoKIwaiKUchimuraK2014A steady increase in nontuberculous mycobacteriosis mortality and estimated prevalence in JapanAnn Am Thorac Soc1118https://doi.org/10.1513/AnnalsATS.201303-067OCSearch in Google Scholar
Morimoto K, Nonaka M, Yamazaki Y et al. (2024) Amikacin liposome inhalation suspension for Mycobacterium avium complex pulmonary disease: A subgroup analysis of Japanese patients in the randomized, phase 3, CONVERT study. Respir Investig 62:284–290. https://doi.org/10.1016/j.resinv.2023.12.012MorimotoKNonakaMYamazakiY2024Amikacin liposome inhalation suspension for Mycobacterium avium complex pulmonary disease: A subgroup analysis of Japanese patients in the randomized, phase 3, CONVERT studyRespir Investig62284290https://doi.org/10.1016/j.resinv.2023.12.012Search in Google Scholar
Nair VR, Franco LH, Zacharia VM et al. (2016) Microfold cells actively translocate Mycobacterium tuberculosis to initiate infection. Cell Rep 16:1253–1258. https://doi.org/10.1016/j.celrep.2016.06.080NairVRFrancoLHZachariaVM2016Microfold cells actively translocate Mycobacterium tuberculosis to initiate infectionCell Rep1612531258https://doi.org/10.1016/j.celrep.2016.06.080Search in Google Scholar
Natanti A, Palpacelli M, Valsecchi M et al. (2021) Mycobacterium chimaera: A report of 2 new cases and literature review. Int J Legal Med 135:2667–2679. https://doi.org/10.1007/s00414-021-02630-yNatantiAPalpacelliMValsecchiM2021Mycobacterium chimaera: A report of 2 new cases and literature reviewInt J Legal Med13526672679https://doi.org/10.1007/s00414-021-02630-ySearch in Google Scholar
Ndlovu H, Marakalala MJ (2016) Granulomas and inflammation: Host-directed therapies for tuberculosis. Front Immunol 7:434. https://doi.org/10.3389/fimmu.2016.00434NdlovuHMarakalalaMJ2016Granulomas and inflammation: Host-directed therapies for tuberculosisFront Immunol7434https://doi.org/10.3389/fimmu.2016.00434Search in Google Scholar
Nie W, Duan H, Huang H et al. (2014) Species identification of Mycobacterium abscessus subsp. abscessus and Mycobacterium abscessus subsp. bolletii using rpoB and hsp65, and susceptibility testing to eight antibiotics. Int J Infect Dis 25:170–174. https://doi.org/10.1016/j.ijid.2014.02.014NieWDuanHHuangH2014Species identification of Mycobacterium abscessus subsp. abscessus and Mycobacterium abscessus subsp. bolletii using rpoB and hsp65, and susceptibility testing to eight antibioticsInt J Infect Dis25170174https://doi.org/10.1016/j.ijid.2014.02.014Search in Google Scholar
Orujyan D, Narinyan W, Rangarajan S et al. (2022) Protective efficacy of BCG vaccine against Mycobacterium leprae and non-tuberculous mycobacterial infections. Vaccines (Basel) 10:390. https://doi.org/10.3390/vaccines10030390OrujyanDNarinyanWRangarajanS2022Protective efficacy of BCG vaccine against Mycobacterium leprae and non-tuberculous mycobacterial infectionsVaccines (Basel)10390https://doi.org/10.3390/vaccines10030390Search in Google Scholar
Park HE, Lee W, Choi S et al. (2022) Modulating macrophage function to reinforce host innate resistance against Mycobacterium avium complex infection. Front Immunol 13:931876. https://doi.org/10.3389/fimmu.2022.931876ParkHELeeWChoiS2022Modulating macrophage function to reinforce host innate resistance against Mycobacterium avium complex infectionFront Immunol13931876https://doi.org/10.3389/fimmu.2022.931876Search in Google Scholar
Parte AC (2014) LPSN – list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 42(Database issue): D613–D616. https://doi.org/10.1093/nar/gkt1111ParteAC2014LPSN – list of prokaryotic names with standing in nomenclatureNucleic Acids Res42(Database issue):D613D616https://doi.org/10.1093/nar/gkt1111Search in Google Scholar
Pathak K, Hart S, Lande L (2022) Nontuberculous mycobacteria lung disease (NTM-LD): Current recommendations on diagnosis, treatment, and patient management. Int J Gen Med 15:7619–7629. https://doi.org/10.2147/IJGM.S272690PathakKHartSLandeL2022Nontuberculous mycobacteria lung disease (NTM-LD): Current recommendations on diagnosis, treatment, and patient managementInt J Gen Med1576197629https://doi.org/10.2147/IJGM.S272690Search in Google Scholar
Pennington KM, Vu A, Challener D et al. (2021) Approach to the diagnosis and treatment of non-tuberculous mycobacterial disease. J Clin Tuberc Other Mycobact Dis 24:100244. https://doi.org/10.1016/j.jctube.2021.100244PenningtonKMVuAChallenerD2021Approach to the diagnosis and treatment of non-tuberculous mycobacterial diseaseJ Clin Tuberc Other Mycobact Dis24100244https://doi.org/10.1016/j.jctube.2021.100244Search in Google Scholar
Pereira AC, Ramos B, Reis AC et al. (2020) Non-tuberculous mycobacteria: Molecular and physiological bases of virulence and adaptation to ecological niches. Microorganisms 8:1380. https://doi.org/10.3390/microorganisms8091380PereiraACRamosBReisAC2020Non-tuberculous mycobacteria: Molecular and physiological bases of virulence and adaptation to ecological nichesMicroorganisms81380https://doi.org/10.3390/microorganisms8091380Search in Google Scholar
Pidot SJ, Porter JL, Lister T et al. (2021) In vitro activity of SPR719 against Mycobacterium ulcerans, Mycobacterium marinum and Mycobacterium chimaera. PLoS Negl Trop Dis 15:e0009636. https://doi.org/10.1371/journal.pntd.0009636PidotSJPorterJLListerT2021In vitro activity of SPR719 against Mycobacterium ulcerans, Mycobacterium marinum and Mycobacterium chimaeraPLoS Negl Trop Dis15e0009636https://doi.org/10.1371/journal.pntd.0009636Search in Google Scholar
Pinner M (1935) Atypical acid-fast microorganisms. III. Chromogenic acid-fast bacilli from human beings. American Review of Tuberculosis 32(4):424–439.PinnerM1935Atypical acid-fast microorganisms. III. Chromogenic acid-fast bacilli from human beingsAmerican Review of Tuberculosis324424439Search in Google Scholar
Prevots DR, Marras TK (2015) Epidemiology of human pulmonary infection with nontuberculous mycobacteria: A review. Clin Chest Med 36:13–34. https://doi.org/10.1016/j.ccm.2014.10.002PrevotsDRMarrasTK2015Epidemiology of human pulmonary infection with nontuberculous mycobacteria: A reviewClin Chest Med361334https://doi.org/10.1016/j.ccm.2014.10.002Search in Google Scholar
Prevots DR, Shaw PA, Strickland D et al. (2010) Nontuberculous mycobacterial lung disease prevalence at four integrated health care delivery systems. Am J Respir Crit Care Med 182:970–976. https://doi.org/10.1164/rccm.201002-0310OCPrevotsDRShawPAStricklandD2010Nontuberculous mycobacterial lung disease prevalence at four integrated health care delivery systemsAm J Respir Crit Care Med182970976https://doi.org/10.1164/rccm.201002-0310OCSearch in Google Scholar
Quang NT, Jang J (2021) Current molecular therapeutic agents and drug candidates for Mycobacterium abscessus. Front Pharmacol 12:724725. https://doi.org/10.3389/fphar.2021.724725QuangNTJangJ2021Current molecular therapeutic agents and drug candidates for Mycobacterium abscessusFront Pharmacol12724725https://doi.org/10.3389/fphar.2021.724725Search in Google Scholar
Ratnatunga CN, Lutzky VP, Kupz A et al. (2020) The rise of non-tuberculosis mycobacterial lung disease. Front Immunol 11:303. https://doi.org/10.3389/fimmu.2020.00303RatnatungaCNLutzkyVPKupzA2020The rise of non-tuberculosis mycobacterial lung diseaseFront Immunol11303https://doi.org/10.3389/fimmu.2020.00303Search in Google Scholar
Riccardi N, Monticelli J, Antonello RM et al. (2020) Mycobacterium chimaera infections: An update. J Infect Chemother 26:199–205. https://doi.org/10.1016/j.jiac.2019.11.004RiccardiNMonticelliJAntonelloRM2020Mycobacterium chimaera infections: An updateJ Infect Chemother26199205https://doi.org/10.1016/j.jiac.2019.11.004Search in Google Scholar
Rodríguez-Temporal D, Herrera L, Alcaide F et al. (2023) Identification of Mycobacterium abscessus subspecies by MALDI-TOF mass spectrometry and machine learning. J Clin Microbiol 61:e0111022. https://doi.org/10.1128/jcm.01110-22Rodríguez-TemporalDHerreraLAlcaideF2023Identification of Mycobacterium abscessus subspecies by MALDI-TOF mass spectrometry and machine learningJ Clin Microbiol61e0111022https://doi.org/10.1128/jcm.01110-22Search in Google Scholar
Roth A, Reischl U, Schönfeld N et al. (2000) Mycobacterium heckeshornense sp. nov. A new pathogenic slowly growing Mycobacterium sp. causing cavitary lung disease in an immunocompetent patient. J Clin Microbiol 38:4102–4107. https://doi.org/10.1128/JCM.38.11.4102-4107.2000RothAReischlUSchönfeldN2000Mycobacterium heckeshornense sp. nov. A new pathogenic slowly growing Mycobacterium sp. causing cavitary lung disease in an immunocompetent patientJ Clin Microbiol3841024107https://doi.org/10.1128/JCM.38.11.4102-4107.2000Search in Google Scholar
Ruis C, Bryant JM, Bell SC et al. (2021) Dissemination of Mycobacterium abscessus via global transmission networks. Nat Microbiol 6:1279–1288. https://doi.org/10.1038/s41564-021-00963-3RuisCBryantJMBellSC2021Dissemination of Mycobacterium abscessus via global transmission networksNat Microbiol612791288https://doi.org/10.1038/s41564-021-00963-3Search in Google Scholar
Runyon EH (1959) Anonymous mycobacteria in pulmonary disease. Med Clin North Am 43:273–290. https://doi.org/10.1016/s0025-7125(16)34193-1RunyonEH1959Anonymous mycobacteria in pulmonary diseaseMed Clin North Am43273290https://doi.org/10.1016/s0025-7125(16)34193-1Search in Google Scholar
Salvana EM, Cooper GS, Salata RA (2007) Mycobacterium other than tuberculosis (MOTT) infection: An emerging disease in infliximab-treated patients. J Infect 55:484–487. https://doi.org/10.1016/j.jinf.2007.08.007SalvanaEMCooperGSSalataRA2007Mycobacterium other than tuberculosis (MOTT) infection: An emerging disease in infliximab-treated patientsJ Infect55484487https://doi.org/10.1016/j.jinf.2007.08.007Search in Google Scholar
Schuurbiers MMF, Bruno M, Zweijpfenning SMH et al. (2020) Immune defects in patients with pulmonary Mycobacterium abscessus disease without cystic fibrosis. ERJ Open Res 6:00590–2020. https://doi.org/10.1183/23120541.00590-2020SchuurbiersMMFBrunoMZweijpfenningSMH2020Immune defects in patients with pulmonary Mycobacterium abscessus disease without cystic fibrosisERJ Open Res6005902020https://doi.org/10.1183/23120541.00590-2020Search in Google Scholar
Seth-Smith HMB, Imkamp F, Tagini F et al. (2019) Discovery and characterization of Mycobacterium basiliense sp. nov., a nontuberculous Mycobacterium isolated from human lungs. Front Microbiol 9:3184. https://doi.org/10.3389/fmicb.2018.03184Seth-SmithHMBImkampFTaginiF2019Discovery and characterization of Mycobacterium basiliense sp. nov., a nontuberculous Mycobacterium isolated from human lungsFront Microbiol93184https://doi.org/10.3389/fmicb.2018.03184Search in Google Scholar
Shahraki AH, Trovato A, Mirsaeidi M et al. (2017) Mycobacterium persicum sp. nov., a novel species closely related to Mycobacterium kansasii and Mycobacterium gastri. Int J Syst Evol Microbiol 67:1766–1770. https://doi.org/10.1099/ijsem.0.001862ShahrakiAHTrovatoAMirsaeidiM2017Mycobacterium persicum sp. nov., a novel species closely related to Mycobacterium kansasii and Mycobacterium gastriInt J Syst Evol Microbiol6717661770https://doi.org/10.1099/ijsem.0.001862Search in Google Scholar
Sharma SK, Upadhyay V (2020) Epidemiology, diagnosis and treatment of non-tuberculous mycobacterial diseases. Indian J Med Res 152:185–226. https://doi.org/10.4103/ijmr.IJMR_902_20SharmaSKUpadhyayV2020Epidemiology, diagnosis and treatment of non-tuberculous mycobacterial diseasesIndian J Med Res152185226https://doi.org/10.4103/ijmr.IJMR_902_20Search in Google Scholar
Shin MK, Shin SJ (2021) Genetic involvement of Mycobacterium avium complex in the regulation and manipulation of innate immune functions of host cells. Int J Mol Sci 22:3011. https://doi.org/10.3390/ijms22063011ShinMKShinSJ2021Genetic involvement of Mycobacterium avium complex in the regulation and manipulation of innate immune functions of host cellsInt J Mol Sci223011https://doi.org/10.3390/ijms22063011Search in Google Scholar
Shirley M (2019) Amikacin liposome inhalation suspension: A review in Mycobacterium avium complex lung disease. Drugs 79:555–562. https://doi.org/10.1007/s40265-019-01095-zShirleyM2019Amikacin liposome inhalation suspension: A review in Mycobacterium avium complex lung diseaseDrugs79555562https://doi.org/10.1007/s40265-019-01095-zSearch in Google Scholar
Shu CC, Wu MF, Pan SW et al. (2020) Host immune response against environmental nontuberculous mycobacteria and the risk populations of nontuberculous mycobacterial lung disease. J Formos Med Assoc 119(Suppl. 1):S13–S22. https://doi.org/10.1016/j.jfma.2020.05.001ShuCCWuMFPanSW2020Host immune response against environmental nontuberculous mycobacteria and the risk populations of nontuberculous mycobacterial lung diseaseJ Formos Med Assoc119Suppl. 1S13S22https://doi.org/10.1016/j.jfma.2020.05.001Search in Google Scholar
Shulha JA, Escalante P, Wilson JW (2019) Pharmacotherapy approaches in nontuberculous mycobacteria infections. Mayo Clin Proc 94:1567–1581. https://doi.org/10.1016/j.mayocp.2018.12.011ShulhaJAEscalantePWilsonJW2019Pharmacotherapy approaches in nontuberculous mycobacteria infectionsMayo Clin Proc9415671581https://doi.org/10.1016/j.mayocp.2018.12.011Search in Google Scholar
Sousa S, Borges V, Joao I et al. (2019) Nontuberculous mycobacteria persistence in a cell model mimicking alveolar macrophages. Microorganisms 7:113. https://doi.org/10.3390/microorganisms7050113SousaSBorgesVJoaoI2019Nontuberculous mycobacteria persistence in a cell model mimicking alveolar macrophagesMicroorganisms7113https://doi.org/10.3390/microorganisms7050113Search in Google Scholar
Steglich R, Dalcolmo GF, Carvalho de Queiroz Mello F et al. (2020) Non-tuberculous mycobacteria: Epidemiological pattern in a reference laboratory and risk factors associated with pulmonary disease. BMC Public Health 20:1593.SteglichRDalcolmoGFCarvalho de Queiroz MelloF2020Non-tuberculous mycobacteria: Epidemiological pattern in a reference laboratory and risk factors associated with pulmonary diseaseBMC Public Health201593Search in Google Scholar
Tam CM, Leung CC (2000) Cessation of the BCG (Bacille Calmette Guerin) revaccination programme for primary school children in Hong Kong. Public Health Epidemiol Bull 9:25–27.TamCMLeungCC2000Cessation of the BCG (Bacille Calmette Guerin) revaccination programme for primary school children in Hong KongPublic Health Epidemiol Bull92527Search in Google Scholar
Taylor LJ, Mitchell JD (2023) Surgical resection in nontuberculous mycobacterial pulmonary disease. Clin Chest Med 44:861–868. https://doi.org/10.1016/j.ccm.2023.06.013TaylorLJMitchellJD2023Surgical resection in nontuberculous mycobacterial pulmonary diseaseClin Chest Med44861868https://doi.org/10.1016/j.ccm.2023.06.013Search in Google Scholar
Thomson RM, Donnan E, Konstantinos A (2017) Notification of nontuberculous mycobacteria: An Australian perspective. Ann Am Thorac Soc 14:318–323. https://doi.org/10.1513/AnnalsATS.201612-994OIThomsonRMDonnanEKonstantinosA2017Notification of nontuberculous mycobacteria: An Australian perspectiveAnn Am Thorac Soc14318323https://doi.org/10.1513/AnnalsATS.201612-994OISearch in Google Scholar
Thomson RM, Furuya-Kanamori L, Coffey C et al. (2020) Influence of climate variables on the rising incidence of non-tuberculous mycobacterial (NTM) infections in Queensland, Australia 2001–2016. Sci Total Environ 740:139796. https://doi.org/10.1016/j.scitotenv.2020.139796ThomsonRMFuruya-KanamoriLCoffeyC2020Influence of climate variables on the rising incidence of non-tuberculous mycobacterial (NTM) infections in Queensland, Australia 2001–2016Sci Total Environ740139796https://doi.org/10.1016/j.scitotenv.2020.139796Search in Google Scholar
Thomson RM, Loebinger MR, Burke AJ et al. (2023) OPTIMA: An open-label, non-comparative pilot trial of inhaled molgramostim in pulmonary nontuberculous mycobacterial infection. Ann Am Thorac Soc 21:568–576. https://doi.org/10.1513/AnnalsATS.202306-532OCThomsonRMLoebingerMRBurkeAJ2023OPTIMA: An open-label, non-comparative pilot trial of inhaled molgramostim in pulmonary nontuberculous mycobacterial infectionAnn Am Thorac Soc21568576https://doi.org/10.1513/AnnalsATS.202306-532OCSearch in Google Scholar
Thornton CS, Mellett M, Jarand J et al. (2021) The respiratory microbiome and nontuberculous mycobacteria: An emerging concern in human health. Eur Respir Rev 30:200299. https://doi.org/10.1183/16000617.0299-2020ThorntonCSMellettMJarandJ2021The respiratory microbiome and nontuberculous mycobacteria: An emerging concern in human healthEur Respir Rev30200299https://doi.org/10.1183/16000617.0299-2020Search in Google Scholar
Torrelles JB, Schlesinger LS (2017) Integrating lung physiology, immunology, and tuberculosis. Trends Microbiol 25:688–697. https://doi.org/10.1016/j.tim.2017.03.007TorrellesJBSchlesingerLS2017Integrating lung physiology, immunology, and tuberculosisTrends Microbiol25688697https://doi.org/10.1016/j.tim.2017.03.007Search in Google Scholar
Tortoli E (2014) Microbiological features and clinical relevance of new species of the genus Mycobacterium. Clin Microbiol Rev 27:727–752. https://doi.org/10.1128/CMR.00035-14TortoliE2014Microbiological features and clinical relevance of new species of the genus MycobacteriumClin Microbiol Rev27727752https://doi.org/10.1128/CMR.00035-14Search in Google Scholar
Tortoli E, Fedrizzi T, Meehan CJ et al. (2017) The new phylogeny of the genus Mycobacterium: The old and the news. Infect Genet Evol 56:19–25. https://doi.org/10.1016/j.meegid.2017.10.013TortoliEFedrizziTMeehanCJ2017The new phylogeny of the genus Mycobacterium: The old and the newsInfect Genet Evol561925https://doi.org/10.1016/j.meegid.2017.10.013Search in Google Scholar
Tortoli E, Rindi L, Garcia MJ et al. (2004) Proposal to elevate the genetic variant MAC-A, included in the Mycobacterium avium complex, to species rank as Mycobacterium chimaera sp. nov. Int J Syst Evol Microbiol 54:1277–1285. https://doi.org/10.1099/ijs.0.02777-0TortoliERindiLGarciaMJ2004Proposal to elevate the genetic variant MAC-A, included in the Mycobacterium avium complex, to species rank as Mycobacterium chimaera sp. novInt J Syst Evol Microbiol5412771285https://doi.org/10.1099/ijs.0.02777-0Search in Google Scholar
van der Laan R, Snabilié A, Obradovic M (2022) Meeting the challenges of NTM-PD from the perspective of the organism and the disease process: Innovations in drug development and delivery. Respir Res 23:376. https://doi.org/10.1186/s12931-022-02299-wvan der LaanRSnabiliéAObradovicM2022Meeting the challenges of NTM-PD from the perspective of the organism and the disease process: Innovations in drug development and deliveryRespir Res23376https://doi.org/10.1186/s12931-022-02299-wSearch in Google Scholar
Varma-Basil M, Bose M (2019) Mapping the footprints of nontuberculous mycobacteria: A diagnostic dilemma. In: Velayati AA, Farnia P (eds) Nontuberculous mycobacteria (NTM). London, Academic Press, pp. 155–175. eBook ISBN: 9780128146934.Varma-BasilMBoseM2019Mapping the footprints of nontuberculous mycobacteria: A diagnostic dilemmaIn:VelayatiAAFarniaP(eds)Nontuberculous mycobacteria (NTM)LondonAcademic Press155175eBook ISBN: 9780128146934.Search in Google Scholar
Vega-Dominguez P, Peterson E, Pan M et al. (2020) Biofilms of the non-tuberculous Mycobacterium chelonae form an extracellular matrix and display distinct expression patterns. Cell Surf 6:100043. https://doi.org/10.1016/j.tcsw.2020.100043Vega-DominguezPPetersonEPanM2020Biofilms of the non-tuberculous Mycobacterium chelonae form an extracellular matrix and display distinct expression patternsCell Surf6100043https://doi.org/10.1016/j.tcsw.2020.100043Search in Google Scholar
Verma D, Chan ED, Ordway DJ (2020) Non-tuberculous mycobacteria interference with BCG-current controversies and future directions. Vaccines (Basel) 8:688. https://doi.org/10.3390/vaccines8040688VermaDChanEDOrdwayDJ2020Non-tuberculous mycobacteria interference with BCG-current controversies and future directionsVaccines (Basel)8688https://doi.org/10.3390/vaccines8040688Search in Google Scholar
Victoria L, Gupta A, Gómez JL et al. (2021) Mycobacterium abscessus complex: A review of recent developments in an emerging pathogen. Front Cell Infect Microbiol 11:659997. https://doi.org/10.3389/fcimb.2021.659997VictoriaLGuptaAGómezJL2021Mycobacterium abscessus complex: A review of recent developments in an emerging pathogenFront Cell Infect Microbiol11659997https://doi.org/10.3389/fcimb.2021.659997Search in Google Scholar
Watanabe C, Yoshida Y, Kidoguchi G et al. (2023) Disseminated Mycobacterium abscessus infection with osteoarticular manifestations as an important differential diagnosis of inflammatory arthritis: A case report and literature review. Mod Rheumatol Case Rep 8:49–54. https://doi.org/10.1093/mrcr/rxad054WatanabeCYoshidaYKidoguchiG2023Disseminated Mycobacterium abscessus infection with osteoarticular manifestations as an important differential diagnosis of inflammatory arthritis: A case report and literature reviewMod Rheumatol Case Rep84954https://doi.org/10.1093/mrcr/rxad054Search in Google Scholar
Waugh KM, Wajahat R (2023) Pulmonary Mycobacterium abscessus infection: A pathogen in disguise. Cureus 15:e46897. https://doi.org/10.7759/cureus.46897WaughKMWajahatR2023Pulmonary Mycobacterium abscessus infection: A pathogen in disguiseCureus15e46897https://doi.org/10.7759/cureus.46897Search in Google Scholar
Weeratunga P, Moller DR, Ho LP (2024) Immune mechanisms of granuloma formation in sarcoidosis and tuberculosis. J Clin Invest 134:e175264. https://doi.org/10.1172/JCI175264WeeratungaPMollerDRHoLP2024Immune mechanisms of granuloma formation in sarcoidosis and tuberculosisJ Clin Invest134e175264https://doi.org/10.1172/JCI175264Search in Google Scholar
Wilińska E, Szturmowicz M (2010) [Lung mycobacteriosis – clinical presentation, diagnostics and treatment]. Pneumonol Alergol Pol 78:138–147.WilińskaESzturmowiczM2010[Lung mycobacteriosis – clinical presentation, diagnostics and treatment]Pneumonol Alergol Pol78138147Search in Google Scholar
Winthrop KL, Flume PA, Thomson R et al. (2021) Amikacin liposome inhalation suspension for Mycobacterium avium complex lung disease: A 12-month open-label extension clinical trial. Ann Am Thorac Soc 18:1147–1157. https://doi.org/10.1513/AnnalsATS.202008-925OCWinthropKLFlumePAThomsonR2021Amikacin liposome inhalation suspension for Mycobacterium avium complex lung disease: A 12-month open-label extension clinical trialAnn Am Thorac Soc1811471157https://doi.org/10.1513/AnnalsATS.202008-925OCSearch in Google Scholar
Yoo SJ, Lee KH, Jung SN et al. (2013) Facial skin and soft tissue infection caused by Mycobacterium wolinskyi associated with cosmetic procedures. BMC Infect Dis 13:479. https://doi.org/10.1186/1471-2334-13-479YooSJLeeKHJungSN2013Facial skin and soft tissue infection caused by Mycobacterium wolinskyi associated with cosmetic proceduresBMC Infect Dis13479https://doi.org/10.1186/1471-2334-13-479Search in Google Scholar