Uneingeschränkter Zugang

Growing Challenges of Lung Infections with Non-tuberculous Mycobacteria in Immunocompromised Patients: Epidemiology and Treatment

,  und   
14. März 2025

Zitieren
COVER HERUNTERLADEN

Abate G, Hamzabegovic F, Eickhoff CS et al. (2019) BCG vaccination induces M. avium and M. abscessus cross-protective immunity. Front Immunol 10:234. https://doi.org/10.3389/fimmu.2019.00234 AbateG HamzabegovicF EickhoffCS 2019 BCG vaccination induces M. avium and M. abscessus cross-protective immunity Front Immunol 10 234 https://doi.org/10.3389/fimmu.2019.00234 Search in Google Scholar

Abdalla CM, de Oliveira ZN, Sotto MN et al. (2009) Polymerase chain reaction compared to other laboratory findings and to clinical evaluation in the diagnosis of cutaneous tuberculosis and atypical mycobacteria skin infection. Int J Dermatol 48:27–35. https://doi.org/10.1111/j.1365-4632.2009.03807.x AbdallaCM de OliveiraZN SottoMN 2009 Polymerase chain reaction compared to other laboratory findings and to clinical evaluation in the diagnosis of cutaneous tuberculosis and atypical mycobacteria skin infection Int J Dermatol 48 27 35 https://doi.org/10.1111/j.1365-4632.2009.03807.x Search in Google Scholar

Abudaff NN, Beam E (2017) Mycobacterium arupense: A review article on an emerging potential pathogen in the Mycobacterium terrae complex. J Clin Tuberc Other Mycobact Dis 10:1–5. https://doi.org/10.1016/j.jctube.2017.11.001 AbudaffNN BeamE 2017 Mycobacterium arupense: A review article on an emerging potential pathogen in the Mycobacterium terrae complex J Clin Tuberc Other Mycobact Dis 10 1 5 https://doi.org/10.1016/j.jctube.2017.11.001 Search in Google Scholar

Ahmed I, Tiberi S, Farooqi J et al. (2020) Non-tuberculous mycobacterial infections – A neglected and emerging problem. Int J Infect Dis 92S:S46–S50. https://doi.org/10.1016/j.ijid.2020.02.022 AhmedI TiberiS FarooqiJ 2020 Non-tuberculous mycobacterial infections – A neglected and emerging problem Int J Infect Dis 92S S46 S50 https://doi.org/10.1016/j.ijid.2020.02.022 Search in Google Scholar

Akram SM, Rawla P (2024) Mycobacterium kansasii infection. StatPearls Publishing, Treasure Island, FL. https://www.ncbi.nlm.nih.gov/books/NBK430906/ AkramSM RawlaP 2024 Mycobacterium kansasii infection StatPearls Publishing Treasure Island, FL https://www.ncbi.nlm.nih.gov/books/NBK430906/ Search in Google Scholar

Antczak M, Dadura K, Lewandowska K, Dziadek J (2017) [Nontuberculous mycobacteria – Why treatment is so difficult?]. Kosmos 66:31–40. AntczakM DaduraK LewandowskaK DziadekJ 2017 [Nontuberculous mycobacteria – Why treatment is so difficult?] Kosmos 66 31 40 Search in Google Scholar

Aragaw WW, Cotroneo N, Stokes S et al. (2022) In vitro resistance against DNA gyrase inhibitor SPR719 in Mycobacterium avium and Mycobacterium abscessus. Microbiol Spectr 10:e0132121. https://doi.org/10.1128/spectrum.01321-21 AragawWW CotroneoN StokesS 2022 In vitro resistance against DNA gyrase inhibitor SPR719 in Mycobacterium avium and Mycobacterium abscessus Microbiol Spectr 10 e0132121 https://doi.org/10.1128/spectrum.01321-21 Search in Google Scholar

Arend SM, van Soolingen D, Ottenhoff TH (2009) Diagnosis and treatment of lung infection with nontuberculous mycobacteria. Curr Opin Pulm Med 15:201–208. https://doi.org/10.1097/MCP.0b013e3283292679 ArendSM van SoolingenD OttenhoffTH 2009 Diagnosis and treatment of lung infection with nontuberculous mycobacteria Curr Opin Pulm Med 15 201 208 https://doi.org/10.1097/MCP.0b013e3283292679 Search in Google Scholar

Ariza-Heredia EJ, Dababneh AS, Wilhelm MP et al. (2011) Mycobacterium wolinskyi: A case series and review of the literature. Diagn Microbiol Infect Dis 71:421–427. https://doi.org/10.1016/j.diagmicrobio.2011.08.005 Ariza-HerediaEJ DababnehAS WilhelmMP 2011 Mycobacterium wolinskyi: A case series and review of the literature Diagn Microbiol Infect Dis 71 421 427 https://doi.org/10.1016/j.diagmicrobio.2011.08.005 Search in Google Scholar

Bakuła Z, Kościuch J, Safianowska A et al. (2018) Clinical, radiological and molecular features of Mycobacterium kansasii pulmonary disease. Respir Med 139:91–100. https://doi.org/10.1016/j.rmed.2018.05.007 BakułaZ KościuchJ SafianowskaA 2018 Clinical, radiological and molecular features of Mycobacterium kansasii pulmonary disease Respir Med 139 91 100 https://doi.org/10.1016/j.rmed.2018.05.007 Search in Google Scholar

Bhanushali J, Jadhav U, Ghewade B et al. (2023) Unveiling the clinical diversity in nontuberculous mycobacteria (NTM) infections: A comprehensive review. Cureus 15:e48270. https://doi.org/10.7759/cureus.48270 BhanushaliJ JadhavU GhewadeB 2023 Unveiling the clinical diversity in nontuberculous mycobacteria (NTM) infections: A comprehensive review Cureus 15 e48270 https://doi.org/10.7759/cureus.48270 Search in Google Scholar

Blanc SM, Robinson D, Fahrenfeld NL (2021) Potential for nontuberculous mycobacteria proliferation in natural and engineered water systems due to climate change: A literature review. City Environ Interact 11:100070. https://doi.org/10.1016/j.cacint.2021.100070 BlancSM RobinsonD FahrenfeldNL 2021 Potential for nontuberculous mycobacteria proliferation in natural and engineered water systems due to climate change: A literature review City Environ Interact 11 100070 https://doi.org/10.1016/j.cacint.2021.100070 Search in Google Scholar

Boeck L, Burbaud S, Skwark M et al. (2022) Mycobacterium abscessus pathogenesis identified by phenogenomic analyses. Nat Microbiol 7:1431–1441. https://doi.org/10.1038/s41564-022-01204-x BoeckL BurbaudS SkwarkM 2022 Mycobacterium abscessus pathogenesis identified by phenogenomic analyses Nat Microbiol 7 1431 1441 https://doi.org/10.1038/s41564-022-01204-x Search in Google Scholar

Brown BA, Springer B, Steingrube VA et al. (1999) Mycobacterium wolinskyi sp. nov. and Mycobacterium goodii sp. nov., two new rapidly growing species related to Mycobacterium smegmatis and associated with human wound infections: A cooperative study from the International Working Group on Mycobacterial Taxonomy. Int J Syst Bacteriol 49(Pt 4):1493–1511. https://doi.org/10.1099/00207713-49-4-1493 BrownBA SpringerB SteingrubeVA 1999 Mycobacterium wolinskyi sp. nov. and Mycobacterium goodii sp. nov., two new rapidly growing species related to Mycobacterium smegmatis and associated with human wound infections: A cooperative study from the International Working Group on Mycobacterial Taxonomy Int J Syst Bacteriol 49 Pt 4 1493 1511 https://doi.org/10.1099/00207713-49-4-1493 Search in Google Scholar

Buchanan R, Agarwal A, Mathai E et al. (2020) Mycobacterium chimaera: A novel pathogen with potential risk to cardiac surgical patients. Natl Med J India 33:284–287. https://doi.org/10.4103/0970-258X.317473 BuchananR AgarwalA MathaiE 2020 Mycobacterium chimaera: A novel pathogen with potential risk to cardiac surgical patients Natl Med J India 33 284 287 https://doi.org/10.4103/0970-258X.317473 Search in Google Scholar

Chai J, Han X, Mei Q et al. (2022) Clinical characteristics and mortality of non-tuberculous mycobacterial infection in immunocompromised vs. immunocompetent hosts. Front Med (Lausanne) 9:884446. https://doi.org/10.3389/fmed.2022.884446 ChaiJ HanX MeiQ 2022 Clinical characteristics and mortality of non-tuberculous mycobacterial infection in immunocompromised vs. immunocompetent hosts Front Med (Lausanne) 9 884446 https://doi.org/10.3389/fmed.2022.884446 Search in Google Scholar

Chan WW, Murray MC, Tang P et al. (2011) Mycobacterium heckeshornense peritonitis in a peritoneal dialysis patient: A case report and review of the literature. Clin Microbiol Infect 17:1262–1264. https://doi.org/10.1111/j.1469-0691.2010.03449 ChanWW MurrayMC TangP 2011 Mycobacterium heckeshornense peritonitis in a peritoneal dialysis patient: A case report and review of the literature Clin Microbiol Infect 17 1262 1264 https://doi.org/10.1111/j.1469-0691.2010.03449 Search in Google Scholar

Chin KL, Sarmiento ME, Alvarez-Cabrera N et al. (2020) Pulmonary non-tuberculous mycobacterial infections: Current state and future management. Eur J Clin Microbiol Infect Dis 39:799–826. https://doi.org/10.1007/s10096-019-03771-0 ChinKL SarmientoME Alvarez-CabreraN 2020 Pulmonary non-tuberculous mycobacterial infections: Current state and future management Eur J Clin Microbiol Infect Dis 39 799 826 https://doi.org/10.1007/s10096-019-03771-0 Search in Google Scholar

Chotmongkol V, Kosallavat S, Sawanyawisuth K et al. (2024) Evaluation of seegeneanyplex MTB/NTM real-time detection assay for diagnosis of tuberculous meningitis. Orphanet J Rare Dis 19:7. https://doi.org/10.1186/s13023-023-03009-5 ChotmongkolV KosallavatS SawanyawisuthK 2024 Evaluation of seegeneanyplex MTB/NTM real-time detection assay for diagnosis of tuberculous meningitis Orphanet J Rare Dis 19 7 https://doi.org/10.1186/s13023-023-03009-5 Search in Google Scholar

Cloud JL, Meyer JJ, Pounder JI et al. (2006) Mycobacterium arupense sp. nov., a non-chromogenic bacterium isolated from clinical specimens. Int J Syst Evol Microbiol 56:1413–1418. https://doi.org/10.1099/ijs.0.64194-0 CloudJL MeyerJJ PounderJI 2006 Mycobacterium arupense sp. nov., a non-chromogenic bacterium isolated from clinical specimens Int J Syst Evol Microbiol 56 1413 1418 https://doi.org/10.1099/ijs.0.64194-0 Search in Google Scholar

Cooper SK, Ackart DF, Lanni F et al. (2024) Heterogeneity in immune cell composition is associated with Mycobacterium tuberculosis replication at the granuloma level. Front Immunol 15:1427472. https://doi.org/10.3389/fimmu.2024.1427472 CooperSK AckartDF LanniF 2024 Heterogeneity in immune cell composition is associated with Mycobacterium tuberculosis replication at the granuloma level Front Immunol 15 1427472 https://doi.org/10.3389/fimmu.2024.1427472 Search in Google Scholar

Cowman S, van Ingen J, Griffith DE et al. (2019) Non-tuberculous mycobacterial pulmonary disease. Eur Respir J 54:1900250. https://doi.org/10.1183/13993003.00250-2019 CowmanS van IngenJ GriffithDE 2019 Non-tuberculous mycobacterial pulmonary disease Eur Respir J 54 1900250 https://doi.org/10.1183/13993003.00250-2019 Search in Google Scholar

Cronan MR (2022) In the thick of it: Formation of the tuberculous granuloma and its effects on host and therapeutic responses. Front Immunol 13:820134. https://doi.org/10.3389/fimmu.2022.820134 CronanMR 2022 In the thick of it: Formation of the tuberculous granuloma and its effects on host and therapeutic responses Front Immunol 13 820134 https://doi.org/10.3389/fimmu.2022.820134 Search in Google Scholar

Dahl VN, Mølhave M, Fløe A et al. (2022) Global trends of pulmonary infections with nontuberculous mycobacteria: A systematic review. Int J Infect Dis 125:120–131. https://doi.org/10.1016/j.ijid.2022.10.013 DahlVN MølhaveM FløeA 2022 Global trends of pulmonary infections with nontuberculous mycobacteria: A systematic review Int J Infect Dis 125 120 131 https://doi.org/10.1016/j.ijid.2022.10.013 Search in Google Scholar

Daley CL, Iaccarino JM, Lange C et al. (2020a) Treatment of nontuberculous mycobacterial pulmonary disease: An official ATS/ERS/ESCMID/IDSA clinical practice guideline. Clin Infect Dis 71:905–913. https://doi.org/10.1093/cid/ciaa1125 DaleyCL IaccarinoJM LangeC 2020a Treatment of nontuberculous mycobacterial pulmonary disease: An official ATS/ERS/ESCMID/IDSA clinical practice guideline Clin Infect Dis 71 905 913 https://doi.org/10.1093/cid/ciaa1125 Search in Google Scholar

Daley CL, Iaccarino JM, Lange C et al. (2020b) Treatment of nontuberculous mycobacterial pulmonary disease: An official ATS/ERS/ESCMID/IDSA clinical practice guideline. Clin Infect Dis 71:e1–e36. https://doi.org/10.1093/cid/ciaa241 DaleyCL IaccarinoJM LangeC 2020b Treatment of nontuberculous mycobacterial pulmonary disease: An official ATS/ERS/ESCMID/IDSA clinical practice guideline Clin Infect Dis 71 e1 e36 https://doi.org/10.1093/cid/ciaa241 Search in Google Scholar

Daley CL, Iaccarino JM, Lange C et al. (2020c) Treatment of nontuberculous mycobacterial pulmonary disease: An official ATS/ERS/ESCMID/IDSA clinical practice guideline. Eur Respir J 56:2000535. https://doi.org/10.1183/13993003.00535-2020 DaleyCL IaccarinoJM LangeC 2020c Treatment of nontuberculous mycobacterial pulmonary disease: An official ATS/ERS/ESCMID/IDSA clinical practice guideline Eur Respir J 56 2000535 https://doi.org/10.1183/13993003.00535-2020 Search in Google Scholar

de Man TJ, Perry KA, Lawsin A et al. (2016) Draft genome sequence of Mycobacterium wolinskyi, a rapid-growing species of nontuberculous mycobacteria. Genome Announc 4:e138–e116. https://doi.org/10.1128/genomeA.00138-16 de ManTJ PerryKA LawsinA 2016 Draft genome sequence of Mycobacterium wolinskyi, a rapid-growing species of nontuberculous mycobacteria Genome Announc 4 e138 e116 https://doi.org/10.1128/genomeA.00138-16 Search in Google Scholar

Dedrick RM, Guerrero-Bustamante CA, Garlena RA et al. (2019) Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nat Med 25:730–733. https://doi.org/10.1038/s41591-019-0437-z DedrickRM Guerrero-BustamanteCA GarlenaRA 2019 Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus Nat Med 25 730 733 https://doi.org/10.1038/s41591-019-0437-z Search in Google Scholar

Degiacomi G, Sammartino JC, Chiarelli LR et al. (2019) Mycobacterium abscessus, an emerging and worrisome pathogen among cystic fibrosis patients. Int J Mol Sci 20:5868. https://doi.org/10.3390/ijms20235868 DegiacomiG SammartinoJC ChiarelliLR 2019 Mycobacterium abscessus, an emerging and worrisome pathogen among cystic fibrosis patients Int J Mol Sci 20 5868 https://doi.org/10.3390/ijms20235868 Search in Google Scholar

Delghandi MR, El-Matbouli M, Menanteau-Ledouble S (2020) Mycobacteriosis and infections with non-tuberculous mycobacteria in aquatic organisms: A review. Microorganisms 8:1368. https://doi.org/10.3390/microorganisms8091368 DelghandiMR El-MatbouliM Menanteau-LedoubleS 2020 Mycobacteriosis and infections with non-tuberculous mycobacteria in aquatic organisms: A review Microorganisms 8 1368 https://doi.org/10.3390/microorganisms8091368 Search in Google Scholar

Desai AN, Hurtado R (2021) Nontuberculous mycobacterial infections. The Journal of the American Medical Association (JAMA) 325(15):1574. https://doi.org/10.1001/jama.2020.19062 DesaiAN HurtadoR 2021 Nontuberculous mycobacterial infections The Journal of the American Medical Association (JAMA) 325 15 1574 https://doi.org/10.1001/jama.2020.19062 Search in Google Scholar

Dokic A, Peterson E, Arrieta-Ortiz ML et al. (2021) Mycobacterium abscessus biofilms produce an extracellular matrix and have a distinct mycolic acid profile. Cell Surf 7:100051. https://doi.org/10.1016/j.tcsw.2021.100051 DokicA PetersonE Arrieta-OrtizML 2021 Mycobacterium abscessus biofilms produce an extracellular matrix and have a distinct mycolic acid profile Cell Surf 7 100051 https://doi.org/10.1016/j.tcsw.2021.100051 Search in Google Scholar

Etna MP, Giacomini E, Severa M et al. (2014) Pro- and anti-inflammatory cytokines in tuberculosis: A two-edged sword in TB pathogenesis. Semin Immunol 26:543–551. https://doi.org/10.1016/j.smim.2014.09.011 EtnaMP GiacominiE SeveraM 2014 Pro- and anti-inflammatory cytokines in tuberculosis: A two-edged sword in TB pathogenesis Semin Immunol 26 543 551 https://doi.org/10.1016/j.smim.2014.09.011 Search in Google Scholar

Flume PA, Garcia BA, Wilson D et al. (2023) Inhaled nitric oxide for adults with pulmonary non-tuberculous mycobacterial infection. Respir Med 206:107069. https://doi.org/10.1016/j.rmed.2022.107069 FlumePA GarciaBA WilsonD 2023 Inhaled nitric oxide for adults with pulmonary non-tuberculous mycobacterial infection Respir Med 206 107069 https://doi.org/10.1016/j.rmed.2022.107069 Search in Google Scholar

Fukushima K, Miki M, Matsumoto Y et al. (2020) The impact of adjuvant surgical treatment of nontuberculous mycobacterial pulmonary disease on prognosis and outcome. Respir Res 21:153. https://doi.org/10.1186/s12931-020-01420-1 FukushimaK MikiM MatsumotoY 2020 The impact of adjuvant surgical treatment of nontuberculous mycobacterial pulmonary disease on prognosis and outcome Respir Res 21 153 https://doi.org/10.1186/s12931-020-01420-1 Search in Google Scholar

Gaudêncio M, Carvalho A, Bertão MI et al. (2021) Mycobacterium chelonae cutaneous infection: A challenge for an internist. Eur J Case Rep Intern Med 8:003013. https://doi.org/10.12890/2021_003013 GaudêncioM CarvalhoA BertãoMI 2021 Mycobacterium chelonae cutaneous infection: A challenge for an internist Eur J Case Rep Intern Med 8 003013 https://doi.org/10.12890/2021_003013 Search in Google Scholar

Gopalaswamy R, Shanmugam S, Mondal R et al. (2020) Of tuberculosis and non-tuberculous mycobacterial infections – A comparative analysis of epidemiology, diagnosis and treatment. J Biomed Sci 27:74. https://doi.org/10.1186/s12929-020-00667-6 GopalaswamyR ShanmugamS MondalR 2020 Of tuberculosis and non-tuberculous mycobacterial infections – A comparative analysis of epidemiology, diagnosis and treatment J Biomed Sci 27 74 https://doi.org/10.1186/s12929-020-00667-6 Search in Google Scholar

Griffith DE, Aksamit T, Brown-Elliott BA et al. (2007) An official ATS/IDSA statement: Diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med 175:367–416. https://doi.org/10.1164/rccm.200604-571ST GriffithDE AksamitT Brown-ElliottBA 2007 An official ATS/IDSA statement: Diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases Am J Respir Crit Care Med 175 367 416 https://doi.org/10.1164/rccm.200604-571ST Search in Google Scholar

Gu Y, Nie W, Huang H et al. (2023) Non-tuberculous mycobacterial disease: Progress and advances in the development of novel candidate and repurposed drugs. Front Cell Infect Microbiol 13:1243457. https://doi.org/10.3389/fcimb.2023.1243457 GuY NieW HuangH 2023 Non-tuberculous mycobacterial disease: Progress and advances in the development of novel candidate and repurposed drugs Front Cell Infect Microbiol 13 1243457 https://doi.org/10.3389/fcimb.2023.1243457 Search in Google Scholar

Guirado E, Schlesinger LS (2013) Modeling the Mycobacterium tuberculosis granuloma – The critical battlefield in host immunity and disease. Front Immunol 4:98. https://doi.org/10.3389/fimmu.2013.00098 GuiradoE SchlesingerLS 2013 Modeling the Mycobacterium tuberculosis granuloma – The critical battlefield in host immunity and disease Front Immunol 4 98 https://doi.org/10.3389/fimmu.2013.00098 Search in Google Scholar

Guler R, Ozturk M, Sabeel S et al. (2021) Targeting molecular inflammatory pathways in granuloma as host-directed therapies for tuberculosis. Front Immunol 12:733853. https://doi.org/10.3389/fimmu.2021.733853 GulerR OzturkM SabeelS 2021 Targeting molecular inflammatory pathways in granuloma as host-directed therapies for tuberculosis Front Immunol 12 733853 https://doi.org/10.3389/fimmu.2021.733853 Search in Google Scholar

Gunasingam N (2022) Morphology and pathological characteristics of mycobacteria. Mycobact Dis S4:005. https://doi.org/10.35248/2161-1068.22.S4.005 GunasingamN 2022 Morphology and pathological characteristics of mycobacteria Mycobact Dis S4 005 https://doi.org/10.35248/2161-1068.22.S4.005 Search in Google Scholar

Gutierrez C, Somoskovi A (2014) Human pathogenic mycobacteria. Ref Module Biomed Sci. Elsevier. https://doi.org/10.1016/B978-0-12-801238-3.00137-9 GutierrezC SomoskoviA 2014 Human pathogenic mycobacteria Ref Module Biomed Sci. Elsevier https://doi.org/10.1016/B978-0-12-801238-3.00137-9 Search in Google Scholar

Haworth CS, Banks J, Capstick T et al. (2017a) British Thoracic Society guidelines for the management of non-tuberculous mycobacterial pulmonary disease (NTM-PD). Thorax 72(Suppl. 2):ii1–ii64. https://doi.org/10.1136/thoraxjnl-2017-210927 HaworthCS BanksJ CapstickT 2017a British Thoracic Society guidelines for the management of non-tuberculous mycobacterial pulmonary disease (NTM-PD) Thorax 72 Suppl. 2 ii1 ii64 https://doi.org/10.1136/thoraxjnl-2017-210927 Search in Google Scholar

Haworth CS, Banks J, Capstick T et al. (2017b) British Thoracic Society Guideline for the management of non-tuberculous mycobacterial pulmonary disease (NTM-PD). BMJ Open Respir Res 4:e000242. https://doi.org/10.1136/bmjresp-2017-000242 HaworthCS BanksJ CapstickT 2017b British Thoracic Society Guideline for the management of non-tuberculous mycobacterial pulmonary disease (NTM-PD) BMJ Open Respir Res 4 e000242 https://doi.org/10.1136/bmjresp-2017-000242 Search in Google Scholar

Herdman AV, Steele JC Jr (2004) The new mycobacterial species – Emerging or newly distinguished pathogens. Clin Lab Med 24:651–690. https://doi.org/10.1016/j.cll.2004.05.011 HerdmanAV SteeleJCJr 2004 The new mycobacterial species – Emerging or newly distinguished pathogens Clin Lab Med 24 651 690 https://doi.org/10.1016/j.cll.2004.05.011 Search in Google Scholar

Hernández-Meneses M, González-Martin J, Agüero D et al. (2021) Hospital clínic of Barcelona infectious endocarditis team. Mycobacterium wolinskyi: A new non-tuberculous Mycobacterium associated with cardiovascular infections? Infect Dis Ther 10:1073–1080. https://doi.org/10.1007/s40121-021-00416-8 Hernández-MenesesM González-MartinJ AgüeroD 2021 Hospital clínic of Barcelona infectious endocarditis team. Mycobacterium wolinskyi: A new non-tuberculous Mycobacterium associated with cardiovascular infections? Infect Dis Ther 10 1073 1080 https://doi.org/10.1007/s40121-021-00416-8 Search in Google Scholar

Hisert KB, Ochoa A, Corley J et al. (2023) GM-CSF is essential for effective macrophage killing of nontuberculous mycobacteria. Am J Respir Crit Care Med 207:A4240. https://doi.org/10.1164/ajrccm-conference.2023.207.1 HisertKB OchoaA CorleyJ 2023 GM-CSF is essential for effective macrophage killing of nontuberculous mycobacteria Am J Respir Crit Care Med 207 A4240 https://doi.org/10.1164/ajrccm-conference.2023.207.1 Search in Google Scholar

Hoefsloot W, van Ingen J, Andrejak C et al. (2013) The geographic diversity of nontuberculous mycobacteria isolated from pulmonary samples: An NTM-NET collaborative study. Eur Respir J 42:1604–1613. https://doi.org/10.1183/09031936.00149212 HoefslootW van IngenJ AndrejakC 2013 The geographic diversity of nontuberculous mycobacteria isolated from pulmonary samples: An NTM-NET collaborative study Eur Respir J 42 1604 1613 https://doi.org/10.1183/09031936.00149212 Search in Google Scholar

Honda JR, Hess T, Carlson R et al. (2020) Nontuberculous mycobacteria show differential infectivity and use phospholipids to antagonize LL-37. Am J Respir Cell Mol Biol 62:354–363. https://doi.org/10.1165/rcmb.2018-0278OC HondaJR HessT CarlsonR 2020 Nontuberculous mycobacteria show differential infectivity and use phospholipids to antagonize LL-37 Am J Respir Cell Mol Biol 62 354 363 https://doi.org/10.1165/rcmb.2018-0278OC Search in Google Scholar

Honda JR, Knight V, Chan ED (2015) Pathogenesis and risk factors for nontuberculous mycobacterial lung disease. Clin Chest Med 36:1–11. https://doi.org/10.1016/j.ccm.2014.10.001 HondaJR KnightV ChanED 2015 Pathogenesis and risk factors for nontuberculous mycobacterial lung disease Clin Chest Med 36 1 11 https://doi.org/10.1016/j.ccm.2014.10.001 Search in Google Scholar

Horne D, Skerrett S (2019) Recent advances in nontuberculous mycobacterial lung infections. F1000Res 8:F1000. https://doi.org/10.12688/f1000research.20096.1 HorneD SkerrettS 2019 Recent advances in nontuberculous mycobacterial lung infections F1000Res 8 F1000 https://doi.org/10.12688/f1000research.20096.1 Search in Google Scholar

Hoy SM (2021) Amikacin liposome inhalation suspension in refractory Mycobacterium avium complex lung disease: A profile of its use. Clin Drug Investig 41:405–412. https://doi.org/10.1007/s40261-021-01010-z HoySM 2021 Amikacin liposome inhalation suspension in refractory Mycobacterium avium complex lung disease: A profile of its use Clin Drug Investig 41 405 412 https://doi.org/10.1007/s40261-021-01010-z Search in Google Scholar

Huang HL, Lu PL, Lee CH et al. (2020) Treatment of pulmonary disease caused by Mycobacterium kansasii. J Formos Med Assoc 119(Suppl. 1):S51–S57. https://doi.org/10.1016/j.jfma.2020.05.018 HuangHL LuPL LeeCH 2020 Treatment of pulmonary disease caused by Mycobacterium kansasii J Formos Med Assoc 119 Suppl. 1 S51 S57 https://doi.org/10.1016/j.jfma.2020.05.018 Search in Google Scholar

Jamal F, Hammer MH (2022) Nontuberculous mycobacterial infections. Radiol Clin North Am 60:399–408. https://doi.org/10.1016/j.rcl.2022.01.012 JamalF HammerMH 2022 Nontuberculous mycobacterial infections Radiol Clin North Am 60 399 408 https://doi.org/10.1016/j.rcl.2022.01.012 Search in Google Scholar

Johnson MM, Odell JA (2014) Nontuberculous mycobacterial pulmonary infections. J Thorac Dis 6:210–220. https://doi.org/10.3978/j.issn.2072-1439.2013.12.24 JohnsonMM OdellJA 2014 Nontuberculous mycobacterial pulmonary infections J Thorac Dis 6 210 220 https://doi.org/10.3978/j.issn.2072-1439.2013.12.24 Search in Google Scholar

Johnston JC, Chiang L, Elwood K (2014) Mycobacterium kansasii. Microbiol Spectr 5. J Thorac Dis 6(3):210–220. https://doi.org/10.3978/j.issn.2072-1439.2013.12.24 JohnstonJC ChiangL ElwoodK 2014 Mycobacterium kansasii. Microbiol Spectr 5 J Thorac Dis 6 3 210 220 https://doi.org/10.3978/j.issn.2072-1439.2013.12.24 Search in Google Scholar

Kambali S, Quinonez E, Sharifi A et al. (2021) Pulmonary nontuberculous mycobacterial disease in Florida and association with large-scale natural disasters. BMC Public Health 21:2058. https://doi.org/10.1186/s12889-021-12115-7 KambaliS QuinonezE SharifiA 2021 Pulmonary nontuberculous mycobacterial disease in Florida and association with large-scale natural disasters BMC Public Health 21 2058 https://doi.org/10.1186/s12889-021-12115-7 Search in Google Scholar

Kim BG, Jhun BW, Kim H et al. (2022) Treatment outcomes of Mycobacterium avium complex pulmonary disease according to disease severity. Sci Rep 12:1970. https://doi.org/10.1038/s41598-022-06022-z KimBG JhunBW KimH 2022 Treatment outcomes of Mycobacterium avium complex pulmonary disease according to disease severity Sci Rep 12 1970 https://doi.org/10.1038/s41598-022-06022-z Search in Google Scholar

Kim BJ, Hong SH, Yu HK et al. (2013) Mycobacterium parakoreense sp. nov., a slowly growing non-chromogenic species related to Mycobacterium koreense, isolated from a human clinical specimen. Int J Syst Evol Microbiol 63:2301–2308. https://doi.org/10.1099/ijs.0.045070-0 KimBJ HongSH YuHK 2013 Mycobacterium parakoreense sp. nov., a slowly growing non-chromogenic species related to Mycobacterium koreense, isolated from a human clinical specimen Int J Syst Evol Microbiol 63 2301 2308 https://doi.org/10.1099/ijs.0.045070-0 Search in Google Scholar

Kim JY, Lee HW, Yim JJ et al. (2023) Outcomes of adjunctive surgery in patients with nontuberculous mycobacterial pulmonary disease: A systematic review and meta-analysis. Chest 163:763–777. https://doi.org/10.1016/j.chest.2022.09.037 KimJY LeeHW YimJJ 2023 Outcomes of adjunctive surgery in patients with nontuberculous mycobacterial pulmonary disease: A systematic review and meta-analysis Chest 163 763 777 https://doi.org/10.1016/j.chest.2022.09.037 Search in Google Scholar

Kim JY, Park S, Park IK et al. (2021) Outcomes of adjunctive surgery for nontuberculous mycobacterial pulmonary disease. BMC Pulm Med 21:312. https://doi.org/10.1186/s12890-021-01679-0 KimJY ParkS ParkIK 2021 Outcomes of adjunctive surgery for nontuberculous mycobacterial pulmonary disease BMC Pulm Med 21 312 https://doi.org/10.1186/s12890-021-01679-0 Search in Google Scholar

Koh WJ (2017) Nontuberculous mycobacteria-overview. Microbiol Spectr 5(1):TNMI7-0024-2016. https://doi.org/10.1128/microbiol-spec.tnmi7-0024-2016 KohWJ 2017 Nontuberculous mycobacteria-overview Microbiol Spectr 5 1 TNMI7-0024-2016. https://doi.org/10.1128/microbiol-spec.tnmi7-0024-2016 Search in Google Scholar

Koh WJ, Moon SM, Kim SY et al. (2017) Outcomes of Mycobacterium avium complex lung disease based on clinical phenotype. Eur Respir J 50:1602503. https://doi.org/10.1183/13993003.02503-2016 KohWJ MoonSM KimSY 2017 Outcomes of Mycobacterium avium complex lung disease based on clinical phenotype Eur Respir J 50 1602503 https://doi.org/10.1183/13993003.02503-2016 Search in Google Scholar

Kumar K, Daley CL, Griffith DE et al. (2022) Management of Mycobacterium avium complex and Mycobacterium abscessus pulmonary disease: Therapeutic advances and emerging treatments. Eur Respir Rev 31:210212. https://doi.org/10.1183/16000617.0212-2021 KumarK DaleyCL GriffithDE 2022 Management of Mycobacterium avium complex and Mycobacterium abscessus pulmonary disease: Therapeutic advances and emerging treatments Eur Respir Rev 31 210212 https://doi.org/10.1183/16000617.0212-2021 Search in Google Scholar

Kumar K, Ponnuswamy A, Capstick TG et al. (2024) Non-tuberculous mycobacterial pulmonary disease (NTM-PD): Epidemiology, diagnosis and multidisciplinary management. Clin Med 24:100017. https://doi.org/10.1016/j.clinme.2024.100017 KumarK PonnuswamyA CapstickTG 2024 Non-tuberculous mycobacterial pulmonary disease (NTM-PD): Epidemiology, diagnosis and multidisciplinary management Clin Med 24 100017 https://doi.org/10.1016/j.clinme.2024.100017 Search in Google Scholar

Kwak N, Hwang HW, Kim HJ et al. (2022) The association between Bacille Calmette-Guérin vaccination and nontuberculous mycobacterial pulmonary disease. J Korean Med Sci 37:e206. https://doi.org/10.3346/jkms.2022.37.e206 KwakN HwangHW KimHJ 2022 The association between Bacille Calmette-Guérin vaccination and nontuberculous mycobacterial pulmonary disease J Korean Med Sci 37 e206 https://doi.org/10.3346/jkms.2022.37.e206 Search in Google Scholar

Larsson LO, Polverino E, Hoefsloot W et al. (2017) Pulmonary disease by non-tuberculous mycobacteria – Clinical management, unmet needs and future perspectives. Expert Rev Respir Med 11:977–989. https://doi.org/10.1080/17476348.2017.1386563 LarssonLO PolverinoE HoefslootW 2017 Pulmonary disease by non-tuberculous mycobacteria – Clinical management, unmet needs and future perspectives Expert Rev Respir Med 11 977 989 https://doi.org/10.1080/17476348.2017.1386563 Search in Google Scholar

Laudone TW, Garner L, Kam CW et al. (2021) Novel therapies for treatment of resistant and refractory nontuberculous mycobacterial infections in patients with cystic fibrosis. Pediatr Pulmonol 56(Suppl. 1):S55–S68. https://doi.org/10.1002/ppul.24939 LaudoneTW GarnerL KamCW 2021 Novel therapies for treatment of resistant and refractory nontuberculous mycobacterial infections in patients with cystic fibrosis Pediatr Pulmonol 56 Suppl. 1 S55 S68 https://doi.org/10.1002/ppul.24939 Search in Google Scholar

Lee JY, Choi EH (2022) Skin infection caused by Mycobacterium abscessus in a healthy adult. J Mycol Infect 27:38–40. https://doi.org/10.17966/JMI.2022.27.2.38 LeeJY ChoiEH 2022 Skin infection caused by Mycobacterium abscessus in a healthy adult J Mycol Infect 27 38 40 https://doi.org/10.17966/JMI.2022.27.2.38 Search in Google Scholar

Li J, Zhan L, Qin C (2021) The double-sided effects of Mycobacterium bovis bacillus Calmette-Guérin vaccine. NPJ Vaccines 6:14. https://doi.org/10.1038/s41541-020-00278-0 LiJ ZhanL QinC 2021 The double-sided effects of Mycobacterium bovis bacillus Calmette-Guérin vaccine NPJ Vaccines 6 14 https://doi.org/10.1038/s41541-020-00278-0 Search in Google Scholar

Loebinger MR (2017) Mycobacterium avium complex infection: Phenotypes and outcomes. Eur Respir J 50:1701380. https://doi.org/10.1183/13993003.01380-2017 LoebingerMR 2017 Mycobacterium avium complex infection: Phenotypes and outcomes Eur Respir J 50 1701380 https://doi.org/10.1183/13993003.01380-2017 Search in Google Scholar

Loebinger MR, Quint JK, van der Laan R et al. (2023) Risk factors for nontuberculous mycobacterial pulmonary disease: A systematic literature review and meta-analysis. Chest 164:1115–1124. https://doi.org/10.1016/j.chest.2023.06.014 LoebingerMR QuintJK van der LaanR 2023 Risk factors for nontuberculous mycobacterial pulmonary disease: A systematic literature review and meta-analysis Chest 164 1115 1124 https://doi.org/10.1016/j.chest.2023.06.014 Search in Google Scholar

Lopeman RC, Harrison J, Desai M et al. (2019) Mycobacterium abscessus: Environmental bacterium turned clinical nightmare. Microorganisms 7:90. https://doi.org/10.3390/microorganisms7030090 LopemanRC HarrisonJ DesaiM 2019 Mycobacterium abscessus: Environmental bacterium turned clinical nightmare Microorganisms 7 90 https://doi.org/10.3390/microorganisms7030090 Search in Google Scholar

Lu M, Fitzgerald D, Karpelowsky J et al. (2018) Surgery in nontuberculous mycobacteria pulmonary disease. Breathe (Sheff) 14:288–301. https://doi.org/10.1183/20734735.027218 LuM FitzgeraldD KarpelowskyJ 2018 Surgery in nontuberculous mycobacteria pulmonary disease Breathe (Sheff) 14 288 301 https://doi.org/10.1183/20734735.027218 Search in Google Scholar

Meliefste HM, Mudde SE, Ammerman NC et al. (2024) A laboratory perspective on Mycobacterium abscessus biofilm culture, characterization and drug activity testing. Front Microbiol 15:1392606. https://doi.org/10.3389/fmicb.2024.1392606 MeliefsteHM MuddeSE AmmermanNC 2024 A laboratory perspective on Mycobacterium abscessus biofilm culture, characterization and drug activity testing Front Microbiol 15 1392606 https://doi.org/10.3389/fmicb.2024.1392606 Search in Google Scholar

Mencarini J, Cresci C, Simonetti MT et al. (2017) Non-tuberculous mycobacteria: Epidemiological pattern in a reference laboratory and risk factors associated with pulmonary disease. Epidemiol Infect 145(3):515–522. https://doi.org/10.1017/S0950268816002521 MencariniJ CresciC SimonettiMT 2017 Non-tuberculous mycobacteria: Epidemiological pattern in a reference laboratory and risk factors associated with pulmonary disease Epidemiol Infect 145 3 515 522 https://doi.org/10.1017/S0950268816002521 Search in Google Scholar

Mercaldo RA, Marshall JE, Cangelosi GA et al. (2023) Environmental risk of nontuberculous mycobacterial infection: Strategies for advancing methodology. Tuberculosis 139:102305. https://doi.org/10.1016/j.tube.2023.102305 MercaldoRA MarshallJE CangelosiGA 2023 Environmental risk of nontuberculous mycobacterial infection: Strategies for advancing methodology Tuberculosis 139 102305 https://doi.org/10.1016/j.tube.2023.102305 Search in Google Scholar

Moore M, Frerichs JB (1953) An unusual acid-fast infection of the knee with subcutaneous, abscess-like lesions of the gluteal region. J Investig Dermatol 20:133–169. https://doi.org/10.1038/jid.1953.18 MooreM FrerichsJB 1953 An unusual acid-fast infection of the knee with subcutaneous, abscess-like lesions of the gluteal region J Investig Dermatol 20 133 169 https://doi.org/10.1038/jid.1953.18 Search in Google Scholar

Moral MZ, Desai K, Arain AR et al. (2019) Mycobacterium abscessus-associated vertebral osteomyelitis in an immunocompetent patient: A rare case report and literature review. Spinal Cord Ser Cases 5:53. https://doi.org/10.1038/s41394-019-0197-5 MoralMZ DesaiK ArainAR 2019 Mycobacterium abscessus-associated vertebral osteomyelitis in an immunocompetent patient: A rare case report and literature review Spinal Cord Ser Cases 5 53 https://doi.org/10.1038/s41394-019-0197-5 Search in Google Scholar

Morimoto K, Iwai K, Uchimura K et al. (2014) A steady increase in nontuberculous mycobacteriosis mortality and estimated prevalence in Japan. Ann Am Thorac Soc 11:1–8. https://doi.org/10.1513/AnnalsATS.201303-067OC MorimotoK IwaiK UchimuraK 2014 A steady increase in nontuberculous mycobacteriosis mortality and estimated prevalence in Japan Ann Am Thorac Soc 11 1 8 https://doi.org/10.1513/AnnalsATS.201303-067OC Search in Google Scholar

Morimoto K, Nonaka M, Yamazaki Y et al. (2024) Amikacin liposome inhalation suspension for Mycobacterium avium complex pulmonary disease: A subgroup analysis of Japanese patients in the randomized, phase 3, CONVERT study. Respir Investig 62:284–290. https://doi.org/10.1016/j.resinv.2023.12.012 MorimotoK NonakaM YamazakiY 2024 Amikacin liposome inhalation suspension for Mycobacterium avium complex pulmonary disease: A subgroup analysis of Japanese patients in the randomized, phase 3, CONVERT study Respir Investig 62 284 290 https://doi.org/10.1016/j.resinv.2023.12.012 Search in Google Scholar

Nair VR, Franco LH, Zacharia VM et al. (2016) Microfold cells actively translocate Mycobacterium tuberculosis to initiate infection. Cell Rep 16:1253–1258. https://doi.org/10.1016/j.celrep.2016.06.080 NairVR FrancoLH ZachariaVM 2016 Microfold cells actively translocate Mycobacterium tuberculosis to initiate infection Cell Rep 16 1253 1258 https://doi.org/10.1016/j.celrep.2016.06.080 Search in Google Scholar

Natanti A, Palpacelli M, Valsecchi M et al. (2021) Mycobacterium chimaera: A report of 2 new cases and literature review. Int J Legal Med 135:2667–2679. https://doi.org/10.1007/s00414-021-02630-y NatantiA PalpacelliM ValsecchiM 2021 Mycobacterium chimaera: A report of 2 new cases and literature review Int J Legal Med 135 2667 2679 https://doi.org/10.1007/s00414-021-02630-y Search in Google Scholar

Ndlovu H, Marakalala MJ (2016) Granulomas and inflammation: Host-directed therapies for tuberculosis. Front Immunol 7:434. https://doi.org/10.3389/fimmu.2016.00434 NdlovuH MarakalalaMJ 2016 Granulomas and inflammation: Host-directed therapies for tuberculosis Front Immunol 7 434 https://doi.org/10.3389/fimmu.2016.00434 Search in Google Scholar

Nie W, Duan H, Huang H et al. (2014) Species identification of Mycobacterium abscessus subsp. abscessus and Mycobacterium abscessus subsp. bolletii using rpoB and hsp65, and susceptibility testing to eight antibiotics. Int J Infect Dis 25:170–174. https://doi.org/10.1016/j.ijid.2014.02.014 NieW DuanH HuangH 2014 Species identification of Mycobacterium abscessus subsp. abscessus and Mycobacterium abscessus subsp. bolletii using rpoB and hsp65, and susceptibility testing to eight antibiotics Int J Infect Dis 25 170 174 https://doi.org/10.1016/j.ijid.2014.02.014 Search in Google Scholar

Orujyan D, Narinyan W, Rangarajan S et al. (2022) Protective efficacy of BCG vaccine against Mycobacterium leprae and non-tuberculous mycobacterial infections. Vaccines (Basel) 10:390. https://doi.org/10.3390/vaccines10030390 OrujyanD NarinyanW RangarajanS 2022 Protective efficacy of BCG vaccine against Mycobacterium leprae and non-tuberculous mycobacterial infections Vaccines (Basel) 10 390 https://doi.org/10.3390/vaccines10030390 Search in Google Scholar

Park HE, Lee W, Choi S et al. (2022) Modulating macrophage function to reinforce host innate resistance against Mycobacterium avium complex infection. Front Immunol 13:931876. https://doi.org/10.3389/fimmu.2022.931876 ParkHE LeeW ChoiS 2022 Modulating macrophage function to reinforce host innate resistance against Mycobacterium avium complex infection Front Immunol 13 931876 https://doi.org/10.3389/fimmu.2022.931876 Search in Google Scholar

Parte AC (2014) LPSN – list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 42(Database issue): D613–D616. https://doi.org/10.1093/nar/gkt1111 ParteAC 2014 LPSN – list of prokaryotic names with standing in nomenclature Nucleic Acids Res 42 (Database issue): D613 D616 https://doi.org/10.1093/nar/gkt1111 Search in Google Scholar

Pathak K, Hart S, Lande L (2022) Nontuberculous mycobacteria lung disease (NTM-LD): Current recommendations on diagnosis, treatment, and patient management. Int J Gen Med 15:7619–7629. https://doi.org/10.2147/IJGM.S272690 PathakK HartS LandeL 2022 Nontuberculous mycobacteria lung disease (NTM-LD): Current recommendations on diagnosis, treatment, and patient management Int J Gen Med 15 7619 7629 https://doi.org/10.2147/IJGM.S272690 Search in Google Scholar

Pennington KM, Vu A, Challener D et al. (2021) Approach to the diagnosis and treatment of non-tuberculous mycobacterial disease. J Clin Tuberc Other Mycobact Dis 24:100244. https://doi.org/10.1016/j.jctube.2021.100244 PenningtonKM VuA ChallenerD 2021 Approach to the diagnosis and treatment of non-tuberculous mycobacterial disease J Clin Tuberc Other Mycobact Dis 24 100244 https://doi.org/10.1016/j.jctube.2021.100244 Search in Google Scholar

Pereira AC, Ramos B, Reis AC et al. (2020) Non-tuberculous mycobacteria: Molecular and physiological bases of virulence and adaptation to ecological niches. Microorganisms 8:1380. https://doi.org/10.3390/microorganisms8091380 PereiraAC RamosB ReisAC 2020 Non-tuberculous mycobacteria: Molecular and physiological bases of virulence and adaptation to ecological niches Microorganisms 8 1380 https://doi.org/10.3390/microorganisms8091380 Search in Google Scholar

Pidot SJ, Porter JL, Lister T et al. (2021) In vitro activity of SPR719 against Mycobacterium ulcerans, Mycobacterium marinum and Mycobacterium chimaera. PLoS Negl Trop Dis 15:e0009636. https://doi.org/10.1371/journal.pntd.0009636 PidotSJ PorterJL ListerT 2021 In vitro activity of SPR719 against Mycobacterium ulcerans, Mycobacterium marinum and Mycobacterium chimaera PLoS Negl Trop Dis 15 e0009636 https://doi.org/10.1371/journal.pntd.0009636 Search in Google Scholar

Pinner M (1935) Atypical acid-fast microorganisms. III. Chromogenic acid-fast bacilli from human beings. American Review of Tuberculosis 32(4):424–439. PinnerM 1935 Atypical acid-fast microorganisms. III. Chromogenic acid-fast bacilli from human beings American Review of Tuberculosis 32 4 424 439 Search in Google Scholar

Prevots DR, Marras TK (2015) Epidemiology of human pulmonary infection with nontuberculous mycobacteria: A review. Clin Chest Med 36:13–34. https://doi.org/10.1016/j.ccm.2014.10.002 PrevotsDR MarrasTK 2015 Epidemiology of human pulmonary infection with nontuberculous mycobacteria: A review Clin Chest Med 36 13 34 https://doi.org/10.1016/j.ccm.2014.10.002 Search in Google Scholar

Prevots DR, Shaw PA, Strickland D et al. (2010) Nontuberculous mycobacterial lung disease prevalence at four integrated health care delivery systems. Am J Respir Crit Care Med 182:970–976. https://doi.org/10.1164/rccm.201002-0310OC PrevotsDR ShawPA StricklandD 2010 Nontuberculous mycobacterial lung disease prevalence at four integrated health care delivery systems Am J Respir Crit Care Med 182 970 976 https://doi.org/10.1164/rccm.201002-0310OC Search in Google Scholar

Quang NT, Jang J (2021) Current molecular therapeutic agents and drug candidates for Mycobacterium abscessus. Front Pharmacol 12:724725. https://doi.org/10.3389/fphar.2021.724725 QuangNT JangJ 2021 Current molecular therapeutic agents and drug candidates for Mycobacterium abscessus Front Pharmacol 12 724725 https://doi.org/10.3389/fphar.2021.724725 Search in Google Scholar

Ratnatunga CN, Lutzky VP, Kupz A et al. (2020) The rise of non-tuberculosis mycobacterial lung disease. Front Immunol 11:303. https://doi.org/10.3389/fimmu.2020.00303 RatnatungaCN LutzkyVP KupzA 2020 The rise of non-tuberculosis mycobacterial lung disease Front Immunol 11 303 https://doi.org/10.3389/fimmu.2020.00303 Search in Google Scholar

Riccardi N, Monticelli J, Antonello RM et al. (2020) Mycobacterium chimaera infections: An update. J Infect Chemother 26:199–205. https://doi.org/10.1016/j.jiac.2019.11.004 RiccardiN MonticelliJ AntonelloRM 2020 Mycobacterium chimaera infections: An update J Infect Chemother 26 199 205 https://doi.org/10.1016/j.jiac.2019.11.004 Search in Google Scholar

Rodríguez-Temporal D, Herrera L, Alcaide F et al. (2023) Identification of Mycobacterium abscessus subspecies by MALDI-TOF mass spectrometry and machine learning. J Clin Microbiol 61:e0111022. https://doi.org/10.1128/jcm.01110-22 Rodríguez-TemporalD HerreraL AlcaideF 2023 Identification of Mycobacterium abscessus subspecies by MALDI-TOF mass spectrometry and machine learning J Clin Microbiol 61 e0111022 https://doi.org/10.1128/jcm.01110-22 Search in Google Scholar

Roth A, Reischl U, Schönfeld N et al. (2000) Mycobacterium heckeshornense sp. nov. A new pathogenic slowly growing Mycobacterium sp. causing cavitary lung disease in an immunocompetent patient. J Clin Microbiol 38:4102–4107. https://doi.org/10.1128/JCM.38.11.4102-4107.2000 RothA ReischlU SchönfeldN 2000 Mycobacterium heckeshornense sp. nov. A new pathogenic slowly growing Mycobacterium sp. causing cavitary lung disease in an immunocompetent patient J Clin Microbiol 38 4102 4107 https://doi.org/10.1128/JCM.38.11.4102-4107.2000 Search in Google Scholar

Ruis C, Bryant JM, Bell SC et al. (2021) Dissemination of Mycobacterium abscessus via global transmission networks. Nat Microbiol 6:1279–1288. https://doi.org/10.1038/s41564-021-00963-3 RuisC BryantJM BellSC 2021 Dissemination of Mycobacterium abscessus via global transmission networks Nat Microbiol 6 1279 1288 https://doi.org/10.1038/s41564-021-00963-3 Search in Google Scholar

Runyon EH (1959) Anonymous mycobacteria in pulmonary disease. Med Clin North Am 43:273–290. https://doi.org/10.1016/s0025-7125(16)34193-1 RunyonEH 1959 Anonymous mycobacteria in pulmonary disease Med Clin North Am 43 273 290 https://doi.org/10.1016/s0025-7125(16)34193-1 Search in Google Scholar

Salvana EM, Cooper GS, Salata RA (2007) Mycobacterium other than tuberculosis (MOTT) infection: An emerging disease in infliximab-treated patients. J Infect 55:484–487. https://doi.org/10.1016/j.jinf.2007.08.007 SalvanaEM CooperGS SalataRA 2007 Mycobacterium other than tuberculosis (MOTT) infection: An emerging disease in infliximab-treated patients J Infect 55 484 487 https://doi.org/10.1016/j.jinf.2007.08.007 Search in Google Scholar

Schuurbiers MMF, Bruno M, Zweijpfenning SMH et al. (2020) Immune defects in patients with pulmonary Mycobacterium abscessus disease without cystic fibrosis. ERJ Open Res 6:00590–2020. https://doi.org/10.1183/23120541.00590-2020 SchuurbiersMMF BrunoM ZweijpfenningSMH 2020 Immune defects in patients with pulmonary Mycobacterium abscessus disease without cystic fibrosis ERJ Open Res 6 00590 2020 https://doi.org/10.1183/23120541.00590-2020 Search in Google Scholar

Seth-Smith HMB, Imkamp F, Tagini F et al. (2019) Discovery and characterization of Mycobacterium basiliense sp. nov., a nontuberculous Mycobacterium isolated from human lungs. Front Microbiol 9:3184. https://doi.org/10.3389/fmicb.2018.03184 Seth-SmithHMB ImkampF TaginiF 2019 Discovery and characterization of Mycobacterium basiliense sp. nov., a nontuberculous Mycobacterium isolated from human lungs Front Microbiol 9 3184 https://doi.org/10.3389/fmicb.2018.03184 Search in Google Scholar

Shahraki AH, Trovato A, Mirsaeidi M et al. (2017) Mycobacterium persicum sp. nov., a novel species closely related to Mycobacterium kansasii and Mycobacterium gastri. Int J Syst Evol Microbiol 67:1766–1770. https://doi.org/10.1099/ijsem.0.001862 ShahrakiAH TrovatoA MirsaeidiM 2017 Mycobacterium persicum sp. nov., a novel species closely related to Mycobacterium kansasii and Mycobacterium gastri Int J Syst Evol Microbiol 67 1766 1770 https://doi.org/10.1099/ijsem.0.001862 Search in Google Scholar

Sharma SK, Upadhyay V (2020) Epidemiology, diagnosis and treatment of non-tuberculous mycobacterial diseases. Indian J Med Res 152:185–226. https://doi.org/10.4103/ijmr.IJMR_902_20 SharmaSK UpadhyayV 2020 Epidemiology, diagnosis and treatment of non-tuberculous mycobacterial diseases Indian J Med Res 152 185 226 https://doi.org/10.4103/ijmr.IJMR_902_20 Search in Google Scholar

Shin MK, Shin SJ (2021) Genetic involvement of Mycobacterium avium complex in the regulation and manipulation of innate immune functions of host cells. Int J Mol Sci 22:3011. https://doi.org/10.3390/ijms22063011 ShinMK ShinSJ 2021 Genetic involvement of Mycobacterium avium complex in the regulation and manipulation of innate immune functions of host cells Int J Mol Sci 22 3011 https://doi.org/10.3390/ijms22063011 Search in Google Scholar

Shirley M (2019) Amikacin liposome inhalation suspension: A review in Mycobacterium avium complex lung disease. Drugs 79:555–562. https://doi.org/10.1007/s40265-019-01095-z ShirleyM 2019 Amikacin liposome inhalation suspension: A review in Mycobacterium avium complex lung disease Drugs 79 555 562 https://doi.org/10.1007/s40265-019-01095-z Search in Google Scholar

Shu CC, Wu MF, Pan SW et al. (2020) Host immune response against environmental nontuberculous mycobacteria and the risk populations of nontuberculous mycobacterial lung disease. J Formos Med Assoc 119(Suppl. 1):S13–S22. https://doi.org/10.1016/j.jfma.2020.05.001 ShuCC WuMF PanSW 2020 Host immune response against environmental nontuberculous mycobacteria and the risk populations of nontuberculous mycobacterial lung disease J Formos Med Assoc 119 Suppl. 1 S13 S22 https://doi.org/10.1016/j.jfma.2020.05.001 Search in Google Scholar

Shulha JA, Escalante P, Wilson JW (2019) Pharmacotherapy approaches in nontuberculous mycobacteria infections. Mayo Clin Proc 94:1567–1581. https://doi.org/10.1016/j.mayocp.2018.12.011 ShulhaJA EscalanteP WilsonJW 2019 Pharmacotherapy approaches in nontuberculous mycobacteria infections Mayo Clin Proc 94 1567 1581 https://doi.org/10.1016/j.mayocp.2018.12.011 Search in Google Scholar

Sousa S, Borges V, Joao I et al. (2019) Nontuberculous mycobacteria persistence in a cell model mimicking alveolar macrophages. Microorganisms 7:113. https://doi.org/10.3390/microorganisms7050113 SousaS BorgesV JoaoI 2019 Nontuberculous mycobacteria persistence in a cell model mimicking alveolar macrophages Microorganisms 7 113 https://doi.org/10.3390/microorganisms7050113 Search in Google Scholar

Steglich R, Dalcolmo GF, Carvalho de Queiroz Mello F et al. (2020) Non-tuberculous mycobacteria: Epidemiological pattern in a reference laboratory and risk factors associated with pulmonary disease. BMC Public Health 20:1593. SteglichR DalcolmoGF Carvalho de Queiroz MelloF 2020 Non-tuberculous mycobacteria: Epidemiological pattern in a reference laboratory and risk factors associated with pulmonary disease BMC Public Health 20 1593 Search in Google Scholar

Tam CM, Leung CC (2000) Cessation of the BCG (Bacille Calmette Guerin) revaccination programme for primary school children in Hong Kong. Public Health Epidemiol Bull 9:25–27. TamCM LeungCC 2000 Cessation of the BCG (Bacille Calmette Guerin) revaccination programme for primary school children in Hong Kong Public Health Epidemiol Bull 9 25 27 Search in Google Scholar

Taylor LJ, Mitchell JD (2023) Surgical resection in nontuberculous mycobacterial pulmonary disease. Clin Chest Med 44:861–868. https://doi.org/10.1016/j.ccm.2023.06.013 TaylorLJ MitchellJD 2023 Surgical resection in nontuberculous mycobacterial pulmonary disease Clin Chest Med 44 861 868 https://doi.org/10.1016/j.ccm.2023.06.013 Search in Google Scholar

Thomson RM, Donnan E, Konstantinos A (2017) Notification of nontuberculous mycobacteria: An Australian perspective. Ann Am Thorac Soc 14:318–323. https://doi.org/10.1513/AnnalsATS.201612-994OI ThomsonRM DonnanE KonstantinosA 2017 Notification of nontuberculous mycobacteria: An Australian perspective Ann Am Thorac Soc 14 318 323 https://doi.org/10.1513/AnnalsATS.201612-994OI Search in Google Scholar

Thomson RM, Furuya-Kanamori L, Coffey C et al. (2020) Influence of climate variables on the rising incidence of non-tuberculous mycobacterial (NTM) infections in Queensland, Australia 2001–2016. Sci Total Environ 740:139796. https://doi.org/10.1016/j.scitotenv.2020.139796 ThomsonRM Furuya-KanamoriL CoffeyC 2020 Influence of climate variables on the rising incidence of non-tuberculous mycobacterial (NTM) infections in Queensland, Australia 2001–2016 Sci Total Environ 740 139796 https://doi.org/10.1016/j.scitotenv.2020.139796 Search in Google Scholar

Thomson RM, Loebinger MR, Burke AJ et al. (2023) OPTIMA: An open-label, non-comparative pilot trial of inhaled molgramostim in pulmonary nontuberculous mycobacterial infection. Ann Am Thorac Soc 21:568–576. https://doi.org/10.1513/AnnalsATS.202306-532OC ThomsonRM LoebingerMR BurkeAJ 2023 OPTIMA: An open-label, non-comparative pilot trial of inhaled molgramostim in pulmonary nontuberculous mycobacterial infection Ann Am Thorac Soc 21 568 576 https://doi.org/10.1513/AnnalsATS.202306-532OC Search in Google Scholar

Thornton CS, Mellett M, Jarand J et al. (2021) The respiratory microbiome and nontuberculous mycobacteria: An emerging concern in human health. Eur Respir Rev 30:200299. https://doi.org/10.1183/16000617.0299-2020 ThorntonCS MellettM JarandJ 2021 The respiratory microbiome and nontuberculous mycobacteria: An emerging concern in human health Eur Respir Rev 30 200299 https://doi.org/10.1183/16000617.0299-2020 Search in Google Scholar

Torrelles JB, Schlesinger LS (2017) Integrating lung physiology, immunology, and tuberculosis. Trends Microbiol 25:688–697. https://doi.org/10.1016/j.tim.2017.03.007 TorrellesJB SchlesingerLS 2017 Integrating lung physiology, immunology, and tuberculosis Trends Microbiol 25 688 697 https://doi.org/10.1016/j.tim.2017.03.007 Search in Google Scholar

Tortoli E (2014) Microbiological features and clinical relevance of new species of the genus Mycobacterium. Clin Microbiol Rev 27:727–752. https://doi.org/10.1128/CMR.00035-14 TortoliE 2014 Microbiological features and clinical relevance of new species of the genus Mycobacterium Clin Microbiol Rev 27 727 752 https://doi.org/10.1128/CMR.00035-14 Search in Google Scholar

Tortoli E, Fedrizzi T, Meehan CJ et al. (2017) The new phylogeny of the genus Mycobacterium: The old and the news. Infect Genet Evol 56:19–25. https://doi.org/10.1016/j.meegid.2017.10.013 TortoliE FedrizziT MeehanCJ 2017 The new phylogeny of the genus Mycobacterium: The old and the news Infect Genet Evol 56 19 25 https://doi.org/10.1016/j.meegid.2017.10.013 Search in Google Scholar

Tortoli E, Rindi L, Garcia MJ et al. (2004) Proposal to elevate the genetic variant MAC-A, included in the Mycobacterium avium complex, to species rank as Mycobacterium chimaera sp. nov. Int J Syst Evol Microbiol 54:1277–1285. https://doi.org/10.1099/ijs.0.02777-0 TortoliE RindiL GarciaMJ 2004 Proposal to elevate the genetic variant MAC-A, included in the Mycobacterium avium complex, to species rank as Mycobacterium chimaera sp. nov Int J Syst Evol Microbiol 54 1277 1285 https://doi.org/10.1099/ijs.0.02777-0 Search in Google Scholar

van der Laan R, Snabilié A, Obradovic M (2022) Meeting the challenges of NTM-PD from the perspective of the organism and the disease process: Innovations in drug development and delivery. Respir Res 23:376. https://doi.org/10.1186/s12931-022-02299-w van der LaanR SnabiliéA ObradovicM 2022 Meeting the challenges of NTM-PD from the perspective of the organism and the disease process: Innovations in drug development and delivery Respir Res 23 376 https://doi.org/10.1186/s12931-022-02299-w Search in Google Scholar

Varma-Basil M, Bose M (2019) Mapping the footprints of nontuberculous mycobacteria: A diagnostic dilemma. In: Velayati AA, Farnia P (eds) Nontuberculous mycobacteria (NTM). London, Academic Press, pp. 155–175. eBook ISBN: 9780128146934. Varma-BasilM BoseM 2019 Mapping the footprints of nontuberculous mycobacteria: A diagnostic dilemma In: VelayatiAA FarniaP (eds) Nontuberculous mycobacteria (NTM) London Academic Press 155 175 eBook ISBN: 9780128146934. Search in Google Scholar

Vega-Dominguez P, Peterson E, Pan M et al. (2020) Biofilms of the non-tuberculous Mycobacterium chelonae form an extracellular matrix and display distinct expression patterns. Cell Surf 6:100043. https://doi.org/10.1016/j.tcsw.2020.100043 Vega-DominguezP PetersonE PanM 2020 Biofilms of the non-tuberculous Mycobacterium chelonae form an extracellular matrix and display distinct expression patterns Cell Surf 6 100043 https://doi.org/10.1016/j.tcsw.2020.100043 Search in Google Scholar

Verma D, Chan ED, Ordway DJ (2020) Non-tuberculous mycobacteria interference with BCG-current controversies and future directions. Vaccines (Basel) 8:688. https://doi.org/10.3390/vaccines8040688 VermaD ChanED OrdwayDJ 2020 Non-tuberculous mycobacteria interference with BCG-current controversies and future directions Vaccines (Basel) 8 688 https://doi.org/10.3390/vaccines8040688 Search in Google Scholar

Victoria L, Gupta A, Gómez JL et al. (2021) Mycobacterium abscessus complex: A review of recent developments in an emerging pathogen. Front Cell Infect Microbiol 11:659997. https://doi.org/10.3389/fcimb.2021.659997 VictoriaL GuptaA GómezJL 2021 Mycobacterium abscessus complex: A review of recent developments in an emerging pathogen Front Cell Infect Microbiol 11 659997 https://doi.org/10.3389/fcimb.2021.659997 Search in Google Scholar

Watanabe C, Yoshida Y, Kidoguchi G et al. (2023) Disseminated Mycobacterium abscessus infection with osteoarticular manifestations as an important differential diagnosis of inflammatory arthritis: A case report and literature review. Mod Rheumatol Case Rep 8:49–54. https://doi.org/10.1093/mrcr/rxad054 WatanabeC YoshidaY KidoguchiG 2023 Disseminated Mycobacterium abscessus infection with osteoarticular manifestations as an important differential diagnosis of inflammatory arthritis: A case report and literature review Mod Rheumatol Case Rep 8 49 54 https://doi.org/10.1093/mrcr/rxad054 Search in Google Scholar

Waugh KM, Wajahat R (2023) Pulmonary Mycobacterium abscessus infection: A pathogen in disguise. Cureus 15:e46897. https://doi.org/10.7759/cureus.46897 WaughKM WajahatR 2023 Pulmonary Mycobacterium abscessus infection: A pathogen in disguise Cureus 15 e46897 https://doi.org/10.7759/cureus.46897 Search in Google Scholar

Weeratunga P, Moller DR, Ho LP (2024) Immune mechanisms of granuloma formation in sarcoidosis and tuberculosis. J Clin Invest 134:e175264. https://doi.org/10.1172/JCI175264 WeeratungaP MollerDR HoLP 2024 Immune mechanisms of granuloma formation in sarcoidosis and tuberculosis J Clin Invest 134 e175264 https://doi.org/10.1172/JCI175264 Search in Google Scholar

Wilińska E, Szturmowicz M (2010) [Lung mycobacteriosis – clinical presentation, diagnostics and treatment]. Pneumonol Alergol Pol 78:138–147. WilińskaE SzturmowiczM 2010 [Lung mycobacteriosis – clinical presentation, diagnostics and treatment] Pneumonol Alergol Pol 78 138 147 Search in Google Scholar

Winthrop KL, Flume PA, Thomson R et al. (2021) Amikacin liposome inhalation suspension for Mycobacterium avium complex lung disease: A 12-month open-label extension clinical trial. Ann Am Thorac Soc 18:1147–1157. https://doi.org/10.1513/AnnalsATS.202008-925OC WinthropKL FlumePA ThomsonR 2021 Amikacin liposome inhalation suspension for Mycobacterium avium complex lung disease: A 12-month open-label extension clinical trial Ann Am Thorac Soc 18 1147 1157 https://doi.org/10.1513/AnnalsATS.202008-925OC Search in Google Scholar

Yoo SJ, Lee KH, Jung SN et al. (2013) Facial skin and soft tissue infection caused by Mycobacterium wolinskyi associated with cosmetic procedures. BMC Infect Dis 13:479. https://doi.org/10.1186/1471-2334-13-479 YooSJ LeeKH JungSN 2013 Facial skin and soft tissue infection caused by Mycobacterium wolinskyi associated with cosmetic procedures BMC Infect Dis 13 479 https://doi.org/10.1186/1471-2334-13-479 Search in Google Scholar

Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
1 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Medizin, Vorklinische Medizin, Grundlagenmedizin, Biochemie, Immunologie, Klinische Medizin, Klinische Medizin, andere, Klinische Chemie