Zacytuj

Algazlan AS, Almuraikhi N, Muthurangan M et al (2022) Silver nanoparticles alone or in combination with calcium hydroxide modulate the viability, attachment, migration, and osteogenic differentiation of human mesenchymal stem cells. Int J Mol Sci 24:702. http://doi.org/10.3390/ijms24010702 AlgazlanAS AlmuraikhiN MuthuranganM 2022 Silver nanoparticles alone or in combination with calcium hydroxide modulate the viability, attachment, migration, and osteogenic differentiation of human mesenchymal stem cells Int J Mol Sci 24 702 http://doi.org/10.3390/ijms24010702 Search in Google Scholar

Amato E, Diaz-Fernandez YA, Taglietti A et al (2011) Synthesis, characterization and antibacterial activity against gram positive and gram negative bacteria of biomimetically coated silver nanoparticles. Langmuir 27:9165–9173. http://doi.org/10.1021/la201200r AmatoE Diaz-FernandezYA TagliettiA 2011 Synthesis, characterization and antibacterial activity against gram positive and gram negative bacteria of biomimetically coated silver nanoparticles Langmuir 27 9165 9173 http://doi.org/10.1021/la201200r Search in Google Scholar

Chałas R, Wójcik-Chęcińska I, Woźniak MJ et al (2015) Dental plaque as a biofilm - a risk in oral cavity and methods to prevent. Postepy Hig Med Dośw 69:1140–1148. http://doi.org/10.5604/17322693.1173925 ChałasR Wójcik-ChęcińskaI WoźniakMJ 2015 Dental plaque as a biofilm - a risk in oral cavity and methods to prevent Postepy Hig Med Dośw 69 1140 1148 http://doi.org/10.5604/17322693.1173925 Search in Google Scholar

Du J, Tang J, Xu S et al (2018) A review on silver nanoparticles-induced ecotoxicity and the underlying toxicity mechanisms. Regul Toxicol Pharmacol 98:231–239. http://doi.org/10.1016/j.yrtph.2018.08.003 DuJ TangJ XuS 2018 A review on silver nanoparticles-induced ecotoxicity and the underlying toxicity mechanisms Regul Toxicol Pharmacol 98 231 239 http://doi.org/10.1016/j.yrtph.2018.08.003 Search in Google Scholar

Durán N, Marcato PD, De Conti R et al (2010) Potential use of silver nanoparticles on pathogenic bacteria, their toxicity and possible mechanisms of action. J Braz Chem Soc 21:949–959. https://doi.org/10.1590/S0103-50532010000600002 DuránN MarcatoPD De ContiR 2010 Potential use of silver nanoparticles on pathogenic bacteria, their toxicity and possible mechanisms of action J Braz Chem Soc 21 949 959 https://doi.org/10.1590/S0103-50532010000600002 Search in Google Scholar

Ema M, Okuda H, Gamo M et al (2017) A review of reproductive and developmental toxicity of silver nanoparticles in laboratory animals. Reprod Toxicol 67:149–164. http://doi.org/10.1016/j.reprotox.2017.01.005 EmaM OkudaH GamoM 2017 A review of reproductive and developmental toxicity of silver nanoparticles in laboratory animals Reprod Toxicol 67 149 164 http://doi.org/10.1016/j.reprotox.2017.01.005 Search in Google Scholar

Ferdous Z, Nemmar A (2020) Health impact of silver nanoparticles: a review of the biodistribution and toxicity following various routes of exposure. Int J Mol Sci 21:2375. http://doi.org/10.3390/ijms21072375 FerdousZ NemmarA 2020 Health impact of silver nanoparticles: a review of the biodistribution and toxicity following various routes of exposure Int J Mol Sci 21 2375 http://doi.org/10.3390/ijms21072375 Search in Google Scholar

Greulich C, Braun D, Peetsch A et al (2012) The toxic effect of silver ions and silver nanoparticles towards bacteria and human cells occurs in the same concentration range. RSC Adv 2:6981–6987. http://doi.org/10.1039/c2ra20684f GreulichC BraunD PeetschA 2012 The toxic effect of silver ions and silver nanoparticles towards bacteria and human cells occurs in the same concentration range RSC Adv 2 6981 6987 http://doi.org/10.1039/c2ra20684f Search in Google Scholar

Greulich C, Kittler S, Epple M et al (2009) Studies on the biocompatibility and the interaction of silver nanoparticles with human mesenchymal stem cells (hMSCs). Langenbecks Arch Surg 394:495–502. http://doi.org/10.1007/s00423-009-0472-1 GreulichC KittlerS EppleM 2009 Studies on the biocompatibility and the interaction of silver nanoparticles with human mesenchymal stem cells (hMSCs) Langenbecks Arch Surg 394 495 502 http://doi.org/10.1007/s00423-009-0472-1 Search in Google Scholar

Hare JI, Lammers T, Ashford MB et al (2017) Challenges and strategies in anti-cancer nanomedicine development: an industry perspective. Adv Drug Deliv Rev 108:25–38. http://doi.org/10.1016/j.addr.2016.04.025 HareJI LammersT AshfordMB 2017 Challenges and strategies in anti-cancer nanomedicine development: an industry perspective Adv Drug Deliv Rev 108 25 38 http://doi.org/10.1016/j.addr.2016.04.025 Search in Google Scholar

He W, Liu X, Kienzle A et al (2016) In vitro uptake of silver nanoparticles and their toxicity in human mesenchymal stem cells derived from bone marrow. J Nanosci Nanotechnol 16:219–228. http://doi.org/10.1166/jnn.2016.10728 HeW LiuX KienzleA 2016 In vitro uptake of silver nanoparticles and their toxicity in human mesenchymal stem cells derived from bone marrow J Nanosci Nanotechnol 16 219 228 http://doi.org/10.1166/jnn.2016.10728 Search in Google Scholar

Hsin Y-H, Chen C-F, Huang S et al (2008) The apoptotic effect of nanosilver is mediated by a ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicol Lett 179:130–139. http://doi.org/10.1016/j.toxlet.2008.04.015 HsinY-H ChenC-F HuangS 2008 The apoptotic effect of nanosilver is mediated by a ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells Toxicol Lett 179 130 139 http://doi.org/10.1016/j.toxlet.2008.04.015 Search in Google Scholar

Kim YS, Kim JS, Cho HS et al (2008) Twenty-eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in sprague-dawley rats. Inhal Toxicol 20:575–583. http://doi.org/10.1080/08958370701874663 KimYS KimJS ChoHS 2008 Twenty-eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in sprague-dawley rats Inhal Toxicol 20 575 583 http://doi.org/10.1080/08958370701874663 Search in Google Scholar

Kurzydłowski KJ, Ralph B (1995) The quantitative description of the microstructure of materials. CRC Press Boca Raton, Boston, London, New York, Washington. KurzydłowskiKJ RalphB 1995 The quantitative description of the microstructure of materials CRC Press Boca Raton, Boston, London, New York, Washington Search in Google Scholar

Kvitek L, Panacek A, Prucek R et al (2011) Antibacterial activity and toxicity of silver – nanosilver versus ionic silver. J Phys Conf Ser 303:012029. http://doi.org/10.1088/1742-6596/304/1/012029 KvitekL PanacekA PrucekR 2011 Antibacterial activity and toxicity of silver – nanosilver versus ionic silver J Phys Conf Ser 303 012029 http://doi.org/10.1088/1742-6596/304/1/012029 Search in Google Scholar

Li M, Zou P, Tyner K et al (2017) Physiologically Based Pharmacokinetic (PBPK) modeling of pharmaceutical nanoparticles. AAPS J 19:26–42. http://doi.org/10.1208/s12248-016-0010-3 LiM ZouP TynerK 2017 Physiologically Based Pharmacokinetic (PBPK) modeling of pharmaceutical nanoparticles AAPS J 19 26 42 http://doi.org/10.1208/s12248-016-0010-3 Search in Google Scholar

Lin Z, Monteiro-Riviere NA, Riviere JE (2015) Pharmacokinetics of metallic nanoparticles. Wiley Interdiscip Rev Nanomed Nanobiotechnol 7:189–217. http://doi.org/10.1002/wnan.1304 LinZ Monteiro-RiviereNA RiviereJE 2015 Pharmacokinetics of metallic nanoparticles Wiley Interdiscip Rev Nanomed Nanobiotechnol 7 189 217 http://doi.org/10.1002/wnan.1304 Search in Google Scholar

Liu X, He W, Fang Z et al (2014) Influence of silver nanoparticles on osteogenic differentiation of human mesenchymal stem cells. J Biomed Nanotechnol 10:1277–1285. http://doi.org/10.1166/jbn.2014.1824 LiuX HeW FangZ 2014 Influence of silver nanoparticles on osteogenic differentiation of human mesenchymal stem cells J Biomed Nanotechnol 10 1277 1285 http://doi.org/10.1166/jbn.2014.1824 Search in Google Scholar

Liu F, Mahmood M, Xu Y et al (2015) Effects of silver nanoparticles on human and rat embryonic neural stem cells. Front Neurosci 9:115. http://doi.org/10.3389/fnins.2015.00115 LiuF MahmoodM XuY 2015 Effects of silver nanoparticles on human and rat embryonic neural stem cells Front Neurosci 9 115 http://doi.org/10.3389/fnins.2015.00115 Search in Google Scholar

McNeilly O, Mann R, Hamidian M et al (2021) Emerging concern for silver nanoparticle resistance in Acinetobacter baumanii and other bacteria. Front Microbiol 12:652863. http://doi.org/10.3389/fmicb.2021.652863 McNeillyO MannR HamidianM 2021 Emerging concern for silver nanoparticle resistance in Acinetobacter baumanii and other bacteria Front Microbiol 12 652863 http://doi.org/10.3389/fmicb.2021.652863 Search in Google Scholar

Mondal AH, Yadav D, Mitra S et al (2020) Biosynthesis of silver nanoparticles using culture supernatant of Shewanella sp. ARY1 and their antibacterial activity. Int J Nanomedicine 15: 8295–8310. https://doi.org/10.2147/IJN.S274535 MondalAH YadavD MitraS 2020 Biosynthesis of silver nanoparticles using culture supernatant of Shewanella sp. ARY1 and their antibacterial activity Int J Nanomedicine 15 8295 8310 https://doi.org/10.2147/IJN.S274535 Search in Google Scholar

Morones JR, Elechiguerra JL, Camacho A et al (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353. http://doi.org/10.1088/0957-4484/16/10/059 MoronesJR ElechiguerraJL CamachoA 2005 The bactericidal effect of silver nanoparticles Nanotechnology 16 2346 2353 http://doi.org/10.1088/0957-4484/16/10/059 Search in Google Scholar

Mulder WJM, Jaffer FA, Fayad ZA et al (2014) Imaging and nanomedicine in inflammatory atherosclerosis. Sci Transl Med 6:239sr1. http://doi.org/10.1126/scitranslmed.3005101 MulderWJM JafferFA FayadZA 2014 Imaging and nanomedicine in inflammatory atherosclerosis Sci Transl Med 6 239sr1 http://doi.org/10.1126/scitranslmed.3005101 Search in Google Scholar

Nowack B, Krug HF, Height M (2011) 120 years of nanosilver history: implications for policy makers. Environ Sci Technol 45: 1177–1183. http://doi.org/10.1021/es103316q NowackB KrugHF HeightM 2011 120 years of nanosilver history: implications for policy makers Environ Sci Technol 45 1177 1183 http://doi.org/10.1021/es103316q Search in Google Scholar

Park MVDZ, Neigh AM, Vermeulen JP et al (2011) The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials 32:9810–9817. http://doi.org/10.1016/j.biomaterials.2011.08.08 ParkMVDZ NeighAM VermeulenJP 2011 The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles Biomaterials 32 9810 9817 http://doi.org/10.1016/j.biomaterials.2011.08.08 Search in Google Scholar

Parvekar P, Palaskar J, Metgud S et al (2020) The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of silver nanoparticles against Staphylococcus aureus. Biomater Investig Dent 7:105–109. http://doi.org/10.1080/26415275.2020.1796674 ParvekarP PalaskarJ MetgudS 2020 The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of silver nanoparticles against Staphylococcus aureus Biomater Investig Dent 7 105 109 http://doi.org/10.1080/26415275.2020.1796674 Search in Google Scholar

Pauksch L, Hartmann S, Rohnke M et al (2014) Biocompatibility of silver nanoparticles and silver ions in primary human mesenchymal stem cells and osteoblasts. Acta Biomater 10:439–449. http://doi.org/10.1016/j.actbio.2013.09.037 PaukschL HartmannS RohnkeM 2014 Biocompatibility of silver nanoparticles and silver ions in primary human mesenchymal stem cells and osteoblasts Acta Biomater 10 439 449 http://doi.org/10.1016/j.actbio.2013.09.037 Search in Google Scholar

Rakowski M, Porębski S, Grzelak A (2021) Silver nanoparticles modulate the epithelial-to-mesenchymal transition in estrogen-dependent breast cancer cells in vitro. Int J Mol Sci 22:9203. http://doi.org/10.3390/ijms22179203 RakowskiM PorębskiS GrzelakA 2021 Silver nanoparticles modulate the epithelial-to-mesenchymal transition in estrogen-dependent breast cancer cells in vitro Int J Mol Sci 22 9203 http://doi.org/10.3390/ijms22179203 Search in Google Scholar

Salomoni R, Leo P, Montemor AF et al (2017) Antibacterila effect of silver nanoparticles in Pseudomonas aeruginosa. Nanotechnol Sci Appl 10:115–121. http://doi.org/10.2147/NSA.S133415 SalomoniR LeoP MontemorAF 2017 Antibacterila effect of silver nanoparticles in Pseudomonas aeruginosa Nanotechnol Sci Appl 10 115 121 http://doi.org/10.2147/NSA.S133415 Search in Google Scholar

Samuel MS, Jose S, Selvarajan E et al (2020) Biosynthesized silver nanoparticles using Bacillus amyloliquefaciens; Application for cytotoxicity effect on A549 cell line and photocatalytic degradation of p-nitrophenol. J Photochem Photobiol B 202:111642. http://doi.org/10.1016/j.jphotobiol.2019.111642 SamuelMS JoseS SelvarajanE 2020 Biosynthesized silver nanoparticles using Bacillus amyloliquefaciens; Application for cytotoxicity effect on A549 cell line and photocatalytic degradation of p-nitrophenol J Photochem Photobiol B 202 111642 http://doi.org/10.1016/j.jphotobiol.2019.111642 Search in Google Scholar

Sengstock C, Diendorf J, Epple M et al (2014) Effect of silver nanoparticles on human mesenchymal stem cell differentiation. Beilstein J Nanotechnol 5:2058–2069. http://doi.org/10.3762/bjnano.5.214 SengstockC DiendorfJ EppleM 2014 Effect of silver nanoparticles on human mesenchymal stem cell differentiation Beilstein J Nanotechnol 5 2058 2069 http://doi.org/10.3762/bjnano.5.214 Search in Google Scholar

Sharma HS, Sharma A (2007) Nanoparticles aggravate heat stress induced cognitive deficits, blood-brain barrier disruption, edema formation and brain pathology. Prog Brain Res 162:245–273. http://doi.org/10.1016/S0079-6123(06)62013-X SharmaHS SharmaA 2007 Nanoparticles aggravate heat stress induced cognitive deficits, blood-brain barrier disruption, edema formation and brain pathology Prog Brain Res 162 245 273 http://doi.org/10.1016/S0079-6123(06)62013-X Search in Google Scholar

Shih YH, Pranata R, Chen YC et al (2023) Novel antibacterial activity of silver nanoparticles combined with pterostilbene against Staphylococcus aureus via induction of apoptosis-like cell death and downregulation of ribosomal gene expression. Environ Sci Nano 10:2115–2131. ShihYH PranataR ChenYC 2023 Novel antibacterial activity of silver nanoparticles combined with pterostilbene against Staphylococcus aureus via induction of apoptosis-like cell death and downregulation of ribosomal gene expression Environ Sci Nano 10 2115 2131 Search in Google Scholar

Siddiqi KS, Husen A, Rao RAK (2018) A review on biosynthesis of silver nanoparticles and their biocidal properties. J Nanobiotechnology 16:14. http://doi.org/10.1186/s12951-018-0334-5 SiddiqiKS HusenA RaoRAK 2018 A review on biosynthesis of silver nanoparticles and their biocidal properties J Nanobiotechnology 16 14 http://doi.org/10.1186/s12951-018-0334-5 Search in Google Scholar

Stachurski P, Świątkowski W, Ciszewski A et al (2023) A short review of the toxicity of dentifrices—zebrafish model as a useful tool in ecotoxicological studies. Int J Mol Sci 24:14339. https://doi.org/10.3390/ijms241814339 StachurskiP ŚwiątkowskiW CiszewskiA 2023 A short review of the toxicity of dentifrices—zebrafish model as a useful tool in ecotoxicological studies Int J Mol Sci 24 14339 https://doi.org/10.3390/ijms241814339 Search in Google Scholar

Tang S, Zheng J (2018) Antibacterial activity of silver nanoparticles: structural effects. Adv Healthc Mater 7:e1701503. http://doi.org/10.1002/adhm.201701503 TangS ZhengJ 2018 Antibacterial activity of silver nanoparticles: structural effects Adv Healthc Mater 7 e1701503 http://doi.org/10.1002/adhm.201701503 Search in Google Scholar

Weissleder R, Nahrendorf M, Pittet MJ (2014) Imaging macrophages with nanoparticles. Nat Mater 13:125–138. http://doi.org/10.1038/nmat3780 WeisslederR NahrendorfM PittetMJ 2014 Imaging macrophages with nanoparticles Nat Mater 13 125 138 http://doi.org/10.1038/nmat3780 Search in Google Scholar

Yang X, Li Y, Liu X et al (2020) Nanoparticles and their effects on differentiation of mesenchymal stem cells. Biomater Transl 1: 58–68. http://doi.org/10.3877/cma.j.issn.2096-112X.2020.01.006 YangX LiY LiuX 2020 Nanoparticles and their effects on differentiation of mesenchymal stem cells Biomater Transl 1 58 68 http://doi.org/10.3877/cma.j.issn.2096-112X.2020.01.006 Search in Google Scholar

Yin IX, Zhang J, Zhao IS et al (2020) The antibacterial mechanism of silver nanoparticles and its application in dentistry. Int J Nanomedicine 15:2555–2562. http://doi.org/10.2147/IJN.S246764 YinIX ZhangJ ZhaoIS 2020 The antibacterial mechanism of silver nanoparticles and its application in dentistry Int J Nanomedicine 15 2555 2562 http://doi.org/10.2147/IJN.S246764 Search in Google Scholar

eISSN:
1661-4917
Język:
Angielski
Częstotliwość wydawania:
Volume Open
Dziedziny czasopisma:
Medicine, Basic Medical Science, Biochemistry, Immunology, Clinical Medicine, other, Clinical Chemistry